Skip to main content

Advertisement

Log in

Dark energy-dominated Universe in Lyra geometry

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated a spatially homogeneous and isotropic quintessence Universe in Lyra geometry that fits good with latest observations. We consider that the current Universe is filled with the binary mixture of dust and dark energy. We observe that there is a signature flipping from early decelerating to the present accelerating phase due to the appearance of dark energy which is in good agreement with the current observations. It has also been found that the displacement vector \(\beta \) is not responsible for late time acceleration of the Universe. Some physical and geometrical properties of the Universe are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H Weyl Gravitation and Electricity (Berlin: Sitz. Kon. Preuss Akad. Wiss.) p 465 (1918)

  2. G Lyra Math. Z. 54 52 (1951)

    Article  MathSciNet  Google Scholar 

  3. E Scheibe Math. Z. 57 65 (1952)

    Article  MathSciNet  Google Scholar 

  4. D K Sen Z. Phys. 149 311 (1957)

    Article  ADS  Google Scholar 

  5. D K Sen Can. Math. Bull. 3 255 (1960)

    Article  Google Scholar 

  6. D K Sen and K A Dunn J. Math. Phys. 12 578 (1971)

    Article  ADS  Google Scholar 

  7. D K Sen and J R Vanstone J. Math. Phys. 13 990 (1972)

    Article  ADS  Google Scholar 

  8. W D Halford Aust. J. Phys. 23 863 (1970)

    Article  ADS  Google Scholar 

  9. W D Halford J. Math. Phys. 13 1399 (1972)

    Article  Google Scholar 

  10. E B Manoukian Phys. Rev. D 5 2915 (1972)

    Article  ADS  Google Scholar 

  11. R H Hudgin J. Math. Phys. 14 1794 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  12. K S Bhamra Aust. J. Phys. 27 541 (1974)

    Article  ADS  Google Scholar 

  13. T M Karade and S M Borikar Gen. Relativ. Gravit. 9 431 (1978)

    Article  ADS  Google Scholar 

  14. S B Kalyanshetti and B B Waghmode Gen. Relativ. Gravit. 14 823 (1982)

    Article  ADS  Google Scholar 

  15. D R K Reddy and P Innaiah Astrophys. Space Sci. 123 49 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. A Beesham Astrophys. Space Sci. 127 177 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. A Beesham Astrophys. Space Sci. 127 189 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. A Beesham Astrophys. Space Sci. 127 355 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  19. D R K Reddy and R Venkateswarlu Astrophys. Space Sci. 136 191 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  20. H H Soleng Gen. Relativ. Gravit. 19 1213 (1987)

    Article  ADS  Google Scholar 

  21. A Beesham Aust. J. Phys. 41 833 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. T Singh and G P Singh J. Math. Phys. 32 2456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. T Singh, G P Singh Nuovo Cimento B 106 617 (1991)

    Article  Google Scholar 

  24. T Singh and G P Singh Int. J. Theor. Phys. 31 1433 (1992)

    Article  Google Scholar 

  25. T Singh and G P Singh Fortschr. Phys. 41 737 (1993)

    MathSciNet  Google Scholar 

  26. A Beesham Phys. Rev. D 48 3539 (1993)

    Article  ADS  Google Scholar 

  27. G P Singh and K Desikan Pramana-J. Phys. 49 205 (1996)

    Article  ADS  Google Scholar 

  28. S Perlmutter et al Nature 391 51 (1998)

    Article  ADS  Google Scholar 

  29. S Perlmutter et al Astrophys. J. 517 5 (1999)

    Article  Google Scholar 

  30. A G Riess et al Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  31. F Rahaman et al Pramana J. Phys. 61 123 (2003)

    Article  ADS  Google Scholar 

  32. A Pradhan and S S Kumhar Astrophys. Space Sci. 321 137 (2009)

    Article  ADS  Google Scholar 

  33. A Pradhan and P Mathur Fizika B 18 243 (2009)

    Google Scholar 

  34. A K Yadav Fizika B 19 53 (2010)

  35. S Agarwal, R K Pandey and A Pradhan Int. J. Theor. Phys. 50, 296 (2011)

    Article  Google Scholar 

  36. R S Singh and A Singh Elect. J. Theor. Phys. 9 265 (2012)

    Google Scholar 

  37. H Caglar et al Bal. Phys. lett. 24 241025212 (2016)

  38. R Zia and D C Maurya Int. J. Geom. Meth. Mod. Phys. 15 1850186 (2018)

    Article  MathSciNet  Google Scholar 

  39. D C Maurya and R Zia Phys. Rev. D 100 023503 (2019)

    Article  ADS  Google Scholar 

  40. M R Mollah et al Int. J. Geom. Methods Mod. Phys. 15 1850194 (2018)

  41. J P Ostriker and P J Steinhardt Nature 377 600 (1995)

    Article  ADS  Google Scholar 

  42. M S Turner, G Steigman and L Krauss Phys. Rev. Lett. 52 2090 (1984)

    Article  ADS  Google Scholar 

  43. S M Carroll and M Hoffman Phys. Rev. D 68 023509 (2003)

    Article  ADS  Google Scholar 

  44. D Huterer and M S Turner Phys. Rev. D 64 123527 (2001)

    Article  ADS  Google Scholar 

  45. J Weller and A Albrecht Phys. Rev. D 65 103512 (2002)

    Article  ADS  Google Scholar 

  46. D Polarski and M Chevallier Int. J. Mod. Phys. D 10 213 (2001)

    Article  ADS  Google Scholar 

  47. E V Linder Phys. Rev. Lett. 90 91301 (2003)

  48. T Padmanabhan and T P Roy Choudhury Mon. Not. R. Astron. Soc. 344 823 (2003)

    Article  ADS  Google Scholar 

  49. P S Corasaniti et al Phys. Rev. D 70 083006 (2004)

  50. U Alam, V Sahni and A A Starobinsky JCAP 0406 008 (2004)

    Article  ADS  Google Scholar 

  51. G A Ramanujam, K Fitzcharles and S Muralidharan Ind. J. Phys. 93 959 (2019)

    Article  Google Scholar 

  52. G A Ramanujam J. Mod. Phys. 11 996 (2020)

  53. U Alam et al Mon. Not. Roy. Astron. Soc. 344 1057 (2003)

  54. P Steinhardt, L Wang and I Zlatev Phys. Rev. D 59 123504 (1999)

    Article  ADS  Google Scholar 

  55. V B Johri Phys. Rev. D 63 103504 (2001)

  56. R R Caldwell Phys. Lett. B 545 23 (2002)

    Google Scholar 

  57. V B Johri Phys. Rev. D 70 041303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. K Arun, S B Gudennavar and C Sivaram Ad. Space Res. 60 (1) 166 (2017)

    Article  ADS  Google Scholar 

  59. J L Tonry et al Astrophys. J. 594 1 (2003)

    Article  ADS  Google Scholar 

  60. A Clocchiatti et al Astrophys. J. 642 1 (2006)

    Article  ADS  Google Scholar 

  61. P de Bernardis et al Nature 404 955 (2000)

    Article  ADS  Google Scholar 

  62. S Hanany et al Astrophys. J. 545 L5 (2000)

    Article  ADS  Google Scholar 

  63. D N Spergel et al Astrophys. J. Suppl. 148 175 (2003)

    Article  ADS  Google Scholar 

  64. M Tegmark et al Phys. Rev. D 69 103501 (2004)

    Google Scholar 

  65. U Seljak et al Phys. Rev. D 2005 71 (2005)

    Google Scholar 

  66. J K Adelman-McCarthy et al Astrophys. J. Suppl. 162 38 (2006)

    Article  ADS  Google Scholar 

  67. C L Bennett et al Astrophys. J. Suppl. 148 1 (2003)

    Article  ADS  Google Scholar 

  68. S W Allen et al Mon. Not. R. Astron. Soc. 353 457 (2004)

    Article  ADS  Google Scholar 

  69. N Suzuki et al Astrophys. J. 746 85 (2012)

    Google Scholar 

  70. T Delubac et al Astron. Astrophys. 574 A59 (2015)

    Article  Google Scholar 

  71. C Blake et al Mon. Not. R. Astron. Soc. 425 405 (2012)

    Article  ADS  Google Scholar 

  72. P A R Ade et al Astron. Astrophys. 594 A14 (2016)

    Article  Google Scholar 

  73. S Ghaffari, H Moradpour, I P Lobo, J P M Graca and V B Bezerra Eur. Phys. J. C 78 706 (2018)

    Article  ADS  Google Scholar 

  74. S Kumar and A K Yadav Mod. Phys. Lett. A 26 647 (2011)

    Article  ADS  Google Scholar 

  75. O Akarsu, S Kumar, S Sharma and L Tedesco Phys. Rev. D 100 023532 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  76. P Biswas, P Roy and R Biswas Astrophys. Space Sc. 365 117 (2020)

  77. D M Scolnic et al Astrophys. J 859 101 (2018)

    Article  ADS  Google Scholar 

  78. G Hinshaw et al Astrophys. J. Supp. Sr. 208 19 (2013)

    Article  ADS  Google Scholar 

  79. V Sahni, A Shafieloo and A A Starobinsky Phys. Rev. D 78 103502 (2008)

    Article  ADS  Google Scholar 

  80. A K Yadav, L K Sharma, B K Singh and P K Sahoo New Astronomy 78 101382 (2020)

    Article  Google Scholar 

  81. N Aghanim et al (Planck Collaboration) arXiv:1807.06209 (2018)

  82. A G Riess et al Astrophys. J. 876 1 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to place on record our sincere thanks to the editor and referee for illuminating suggestions that have significantly improved our work in terms of research quality and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Goswami, G.K., Pradhan, A. et al. Dark energy-dominated Universe in Lyra geometry. Indian J Phys 96, 1569–1575 (2022). https://doi.org/10.1007/s12648-021-02071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02071-8

Keywords

Navigation