Skip to main content
Log in

Characteristics of negative pions produced in dC collisions at 4.2 GeV/c per nucleon

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Temperature is considerably an important and commonly used parameter to study characteristics of matter formed during high-energy nuclear collisions. Experimental data from JINR and UrQMD (latest code 3.3p2) models’ simulations have been used to estimate the temperature and other properties of negative pions in collisions of deuteron with carbon nuclei at an incident momentum of 4.2 GeV/c. Transverse mass and transverse momentum spectra have been used to get the temperature of said particles, with the help of some fittings. These fittings are referred to as Hagedorn Thermodynamic and Boltzmann Distribution functions. Such functions or equations are used to describe the particles spectra. Temperature of negative pions has been found to be equal to 98 ± 2 and 114 ± 2 MeV in experimental and model, respectively, using Hagedorn function. Results from both experimental and model calculations have also been compared with each other and thus most reliable fitting function has been suggested. It is found that Hagedorn Thermodynamic function is the most reliable function to get pions’ temperature in said collision system at given incident momentum. Similarly temperature obtained in this research has been compared with results from other experiments in the world and worthy conclusions have been reached and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D Krpic, G Skoro, I Picuric, S Backovic and S Drndarevic Phys. Rev. C 65 034909 (2002).

    Article  ADS  Google Scholar 

  2. K K Olimov Phys. Rev. C 76 055202 (2007).

    Article  ADS  Google Scholar 

  3. K K Olimov, S L Lutpullaev, B S Yuldashev, Y H Huseynaliyev and A K Olimov Eur. Phys. J. A 44 43 (2010).

    Article  ADS  Google Scholar 

  4. K K Olimov Phys. At. Nucl. 73 433 (2010).

    Article  Google Scholar 

  5. K K Olimov et al Phys. Rev. C 75 067901 (2007).

    Article  ADS  Google Scholar 

  6. K K Olimov and M Q Haseeb Eur. Phys. J. A 47 79 (2011).

    Article  ADS  Google Scholar 

  7. K K Olimov, M Q Haseeb, A K Olimov and I Khan Centr Eur. J. Phys. 9 1393 (2011).

    ADS  Google Scholar 

  8. K K Olimov, M Q Haseeb, I Khan, A K Olimov and V V Glagolev Phys. Rev. C 85 014907 (2012).

    Article  ADS  Google Scholar 

  9. K K Olimov, M Q Haseeb and I Khan Phys. At. Nucl. 75 479 (2012).

    Article  Google Scholar 

  10. S Backovic et al Phys. Rev. C 46 1501 (1992).

    Article  ADS  Google Scholar 

  11. K K Olimov, M Q Haseeb and S A Hadi Int. J. Mod. Phys. E 22 1350020 (2013).

    Article  ADS  Google Scholar 

  12. R Brockmann et al Phys. Rev. Lett. 53 2012 (1984).

    Article  ADS  Google Scholar 

  13. L Chkhaidze et al Z. Phys. C 54 179 (1992).

    Article  ADS  Google Scholar 

  14. B Li and W Bauer Phys. Rev. C 44 450 (1991).

    Article  ADS  Google Scholar 

  15. L Chkhaidze et al Bull. Georg. Natl. Acad. Sci. 4 41 (2010).

    Google Scholar 

  16. L Chkhaidze et al Nucl. Phys. A 831 22 (2009).

    Article  ADS  Google Scholar 

  17. R Hagedorn and J Rafelski Phys. Lett. B 97 136 (1980).

    Article  ADS  Google Scholar 

  18. K K Olimov and M Q Haseeb Phys. At. Nucl. 76 595 (2013).

    Article  Google Scholar 

  19. K K Olimov, A Iqbal, V V Glagolev and M Q Haseeb Phys. Rev. C 88 064903 (2013).

    Article  ADS  Google Scholar 

  20. S Ullah et al Nature Scientific Reports 9 11811 (2019).

    Article  ADS  Google Scholar 

  21. Q Ali, Y Ali, M Haseeb and M Ajaz Mod. Phys. Lett. A 34 1950120 (2019).

    Article  ADS  Google Scholar 

  22. M Ajaz and Maryam Mod. Phys. Lett. A 34 1950148 (2019).

  23. M Ajaz et al Mod. Phys. Lett. A 34 1950090 (2019).

    Article  ADS  Google Scholar 

  24. M Ajaz, S Ullah, Y Ali and H Younis Mod. Phys. Lett. A 33 1850038 (2018).

    Article  ADS  Google Scholar 

  25. M Ajaz et al Mod. Phys. Lett. A 33 1850079 (2018).

    Article  ADS  Google Scholar 

  26. Y Ali, S Ullah, S A Khattak and M Ajaz Mod. Phys. Lett. A 34 1950078 (2019).

    Article  ADS  Google Scholar 

  27. S Ullah et al Int. J. Mod. Phys. A 33 1850108 (2018).

    Article  ADS  Google Scholar 

  28. U Tabassam et al Mod. Phys. Lett. A 33 1850094 (2018).

    Article  ADS  Google Scholar 

  29. M Ajaz et al Int. J. Mod. Phys. E 25 1650019 (2016).

    Article  ADS  Google Scholar 

  30. K H Khan et al Can. J. Phys. 94 693 (2016).

    Article  ADS  Google Scholar 

  31. M Ajaz et al Mod. Phys. Lett. A 28 1350175 (2013).

    Article  ADS  Google Scholar 

  32. M Ajaz et al J. Phys. G: Nucl. Part. Phys. 40 055101 (2013).

    Article  ADS  Google Scholar 

  33. M Ajaz et al Int. J. Mod. Phys. E 21 1250095 (2012).

    Article  ADS  Google Scholar 

  34. K K Olimov, A Iqbal, S L Lutpullaev, I Khan and V V Glagolev Int. J. Mod. Phys. E 23 1450084 (2014).

    Article  ADS  Google Scholar 

  35. A Iqbal, K K Olimov, I Khan, B S Yuldashev and M Q Haseeb Int. J. Mod. Phys. 23 1450047 (2014).

    Article  ADS  Google Scholar 

  36. I Khan and K K Olimov Phys. At. Nucl. 76 883 (2013).

    Article  Google Scholar 

  37. I Khan et al Int. J. Theor. Phy. 58 3535 (2019).

    Article  Google Scholar 

  38. I Khan et al Modern Physics Letters A 33 2050066 (2020).

    Article  Google Scholar 

  39. M Ajaz, R Khan, Z Wazir, I Khan and T Bibi Int. J. Theor. Phy. 59 3338 (2020).

    Article  Google Scholar 

  40. I Khan et al Int. Journal of Modern Physics E 29 2050041 (2020).

    Article  ADS  Google Scholar 

  41. I Khan et al Iran J Sci Technol Trans Sci 44 1177 (2020).

    Article  Google Scholar 

  42. D Armutlisky et al Z. Phys. A 328 455 (1987).

    ADS  Google Scholar 

  43. H N Agakishiyev et al Z. Phys. C 27 177 (1985).

    Article  ADS  Google Scholar 

  44. H N Agakishiyev et al. JINR Commun. P1-83-662 (1983).

  45. A I Bondarenko et al. JINR Commun. P1-98-292 (1998).

  46. Ts Baatar et al Phys. At. Nucl. 63 839 (2000).

    Article  Google Scholar 

  47. A I Bondarenko et al Phys. At. Nucl. 60 1833 (1997).

    Google Scholar 

  48. S Galoyan et al Phys. At. Nucl. 66 836 (2003).

    Article  Google Scholar 

  49. S A Bass et al Prog. Part. Nucl. Phys. 41 225 (1998).

    Article  ADS  Google Scholar 

  50. R Hagedorn and J Ranft Suppl. Nuovo Cimento 6 169 (1968).

    Google Scholar 

  51. Gankhuyag, V V Uzhinskii, JINR Preprint P2-96-419 (1996).

  52. A S Galoyan, G L Melkumov and V V Uzhinskii Phys. At. Nucl. 65 1722 (2002).

    Article  Google Scholar 

  53. I Bondarenko et al Phys. At. Nucl. 65 90 (2002).

    Article  Google Scholar 

  54. R N Bekmirzaev, E N Kladnitskaya and S A Sharipova Phys. At. Nucl. 58 58 (1995).

    Google Scholar 

  55. A S Galoyan et al Phys. At. Nucl. 67 256 (2004).

    Article  Google Scholar 

  56. V Y Vovchenko et al Phys. Rev. C 90 024916 (2014).

    Article  ADS  Google Scholar 

  57. S V Afanasiev et al. (NA49 collaboration) Phys. Rev. C 66 054902 (2002).

  58. Alt et al. (NA49 collaboration) Phys. Rev. C 73 044910 (2006).

Download references

Acknowledgements

We are grateful to the functionaries at Laboratory of High Energies, JINR, Dubna, Russia, for their contribution in processing of stereo-photographs from 2-metre propane bubble chamber. We also thank the developers the UrQMD Model. Imran Khan is thankful to UST Bannu for providing basic facilities and financial support from Higher Education Commission (HEC) Pakistan under TTS scheme, for the successful work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Iqbal, M., Zaman, A. et al. Characteristics of negative pions produced in dC collisions at 4.2 GeV/c per nucleon. Indian J Phys 96, 1259–1268 (2022). https://doi.org/10.1007/s12648-021-02066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02066-5

Keywords

Navigation