Skip to main content
Log in

Development of Cryogenic Extrusion Techniques and Modelling of a Twin Screw Extruder: A Review

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A fusion reactor must be fueled by solid pellet injection at the high field side to ensure uniform fuelling and meet the fuel cycle requirements. A reliable extrusion system must be developed to solidify and extrude the fuel in the form of a fine filament. Over the past few decades, various extrusion systems such as in-situ, piston-cylinder, single screw, twin screw extrusion were developed to progress into achieving the extrusion rate specified by ITER (International Thermonuclear Experimental Reactor). Among these techniques, twin screw extruder promises to be reliable due to its continuous operation and stable throughput. This review article has twin objectives. First, it seeks to provide an overview of developments carried out so far for the cryogenic extruders like conceptualization, prototype development and performance. The numerical modelling of cryogenic extruders is at infant stage. Therefore, the second objective of this paper is to review various numerical models from polymer extrusion research and explain the need to adopt those models to arrive at the more optimal design of an extruder. In addition, the thermo-physical properties of hydrogenic fuels are reviewed, which is very important for developing numerical models. Also, this paper brings out the critical gaps that exist in the CFD modelling of a twin screw extruder. The present review work would be of great importance to the scientific community working toward plasma fueling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

EAST:

Experimental Advanced Superconducting Tokamak

ITER:

International Thermonuclear Experimental Reactor

JET:

Joint European Torus

LHD:

Large Helical Device

ORNL:

Oak Ridge National Laboratory

SSE:

Single screw extruder

TSE:

Twin screw extruder

a:

Acceleration

B:

Thread tip width

c:

Specific heat capacity

D:

Rate of deformation tensor

f:

Field variable

g:

Acceleration due to gravity

G:

Local separation between two surfaces

h:

Width of the flow channel

H:

Height of the’C’ Chamber

\(\overline{H}\) :

Step function

k:

Flow Consistency Index

l:

Die length

m:

Number of Thread starts

M:

Mass of the particle

n:

Flow behavior Index

N:

Screw speed

P:

Pressure

Q:

Volume Flow rate

r:

Distance between particles

R:

Radius of the screw

S:

Pitch length

T:

Temperature

\(\overline{T}\) :

Extra stress tensor

u:

Velocity in x direction

v:

Velocity in y direction

V:

Volume

W:

Smoothing parameter

x:

Coordinate

y:

Coordinate

z:

Coordinate

β:

Angle of overlapping

γ:

Shear rate

δ:

Fight gap

Δ:

Difference

σ:

Calendar gap

μ:

Viscosity of the fluid

ε:

Side gap

τ:

Shear Stress

ψ:

Flight angle

ω:

Angular velocity

ρ:

Fluid density

0:

Yield point

p:

Constant Pressure

s:

Triple point

th:

Theoretical

v:

Constant Volume

References

  1. S.K. Combs, L.R. Baylor, Pellet-injector technology—Brief history and key developments in the last 25 years pellet-injector technology. Fusion Sci. Technol. 73, 493–518 (2018). https://doi.org/10.1080/15361055.2017.1421367

    Article  Google Scholar 

  2. P.T. Lang et al., Considerations on the DEMO pellet fuelling system. Fusion Eng. Des. 96–97, 123–128 (2015). https://doi.org/10.1016/j.fusengdes.2015.04.014

    Article  Google Scholar 

  3. L.R. Baylor et al., Pellet fuelling and control of burning plasmas in ITER. Nucl. Fusion 47(5), 443–448 (2007). https://doi.org/10.1088/0029-5515/47/5/008

    Article  ADS  Google Scholar 

  4. L.R. Baylor et al., Improved core fueling with high field side pellet injection in the DIII-D tokamak. Phys. Plasmas 7(5), 1878–1885 (2000). https://doi.org/10.1063/1.874011

    Article  ADS  Google Scholar 

  5. L.R. Baylor et al., Pellet fueling technology development leading to efficient fueling of ITER burning plasmas. Phys. Plasmas 12(5), 1–6 (2005). https://doi.org/10.1063/1.1865052

    Article  Google Scholar 

  6. Y. Igitkhanov, C. Day, P. Lang, B. Plöckl, Assesment of pumping requirements in DEMO reactor. Fusion Sci. Technol. 72(4), 780–784 (2017). https://doi.org/10.1080/15361055.2017.1347465

    Article  Google Scholar 

  7. L.R. Baylor et al., Pellet injection technology and its applications on ITER. IEEE Trans. Plasma Sci. 44(9), 1489–1495 (2016). https://doi.org/10.1109/TPS.2016.2550419

    Article  ADS  Google Scholar 

  8. S.K. Combs et al., Experimental study of the propellant gas load required for pellet injection with ITER-relevant operating parameters. Fusion Sci. Technol. 68(2), 319–325 (2015). https://doi.org/10.13182/FST14-925

    Article  Google Scholar 

  9. I. Vinyar et al., Pellet injectors developed at PELIN for JET, TAE and HL-2A. Fusion Eng. Des. 86(9–11), 2208–2211 (2011). https://doi.org/10.1016/j.fusengdes.2011.03.108

    Article  Google Scholar 

  10. R. Sakamoto et al., Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the large helical device. Rev. Sci. Instrum. 10(1063/1), 4816823 (2013)

    Google Scholar 

  11. A.F. Taylor, A solid hydrogen pellet launcher. J. Sci. Instrum. 2, 696–700 (1969)

    Article  ADS  Google Scholar 

  12. S.K. Combs et al., Performance of a pneumatic hydrogen-pellet injection system on the joint European Torus. Rev. Sci. Instrum. 60(8), 2697–2700 (1989). https://doi.org/10.1063/1.1140643

    Article  ADS  Google Scholar 

  13. S.K. Combs, C.R. Foust, A.L. Qualls, Extruder system for high-throughput/steady-state hydrogen ice supply and application for pellet fueling of reactor-scale fusion experiments. Rev. Sci. Instrum. 69(11), 4012–4013 (1998). https://doi.org/10.1063/1.1149216

    Article  ADS  Google Scholar 

  14. I. Viniar, S. Sudo, Repeating pneumatic pipe-gun for plasma fueling. Rev. Sci. Instrum. 68(3), 1444–1447 (1997). https://doi.org/10.1063/1.1147631

    Article  ADS  Google Scholar 

  15. L.P.B.M. Janssen, A Phenomenological Study on Twin Screw Extruders (Delft Techn, Hogesch, 1976).

    Google Scholar 

  16. I.V. Viniar, S.V. Skoblikov, P.Y. Koblents, Repetitive hydrogen pellet injector utilizing a screw extruder. Tech. Phys. 43(5), 588–590 (1998). https://doi.org/10.1134/1.1259015

    Article  Google Scholar 

  17. I.V. Vinyar, S.V. Skoblikov, A pneumatic injector of deuterium pellets for fusion devices. Instruments Exp. Tech. 43(5), 722–727 (2000). https://doi.org/10.1007/BF02759091

    Article  Google Scholar 

  18. R. Sakamoto, H. Yamada, LHD experimental group, Development of advanced pellet injector systems for plasma fueling. Plasma Fusion Res. 4(002), 1–9 (2009). https://doi.org/10.1585/pfr.4.002

    Article  ADS  Google Scholar 

  19. A. Géraud et al., Status of the JET high frequency pellet injector. Fusion Eng. Des. 88(6–8), 1064–1068 (2013). https://doi.org/10.1016/j.fusengdes.2012.12.019

    Article  Google Scholar 

  20. J.T. Fisher, Diagnostic Twin Screw Extruder for Characterizing Fusion Tokamak Fuel Production (Washington State University, Washington, 2015).

    Google Scholar 

  21. S.J. Meitner et al., Development of a twin-screw D2 extruder for the iter pellet injection system. Fusion Sci. Technol. 56(1), 52–56 (2009). https://doi.org/10.13182/FST09-20

    Article  Google Scholar 

  22. S. J. Meitner et al., “Twin-screw extruder development for the ITER pellet injection system”. In Proceedings–Symposium on Fusion Engineering, pp. 0–3, (2009). https://doi.org/10.1109/FUSION.2009.5226408

  23. P.S. Ravi Kumar, S.K. Arumugam, Non-Newtonian and non-isothermal numerical modelling of a twin screw hydrogen extruder with slip imposed boundary condition on the screw surface. Fusion Eng. Des. 161, 111896 (2020). https://doi.org/10.1016/j.fusengdes.2020.111896

    Article  Google Scholar 

  24. J.W. Leachman, Thermophysical Properties and Modeling of a Hydrogenic Pellet Production System (University of Wisconsin-Madison, Madison, 2010).

    Google Scholar 

  25. R.M. Andraschko, Twin Screw Extrusion and Viscous Dissipation for the Pellet Fuelling of Fusion Reactors (University of Wisconsin-Madison, Madison, 2006).

    Google Scholar 

  26. S.J. Meitner, Viscous Energy Dissipation in Frozen Cryogens (University of Wisconsin-Madison, Madison, 2008).

    Book  Google Scholar 

  27. L.C. Towle, The shear strength of some solidified gases. J. Phys. Chem. Solids 26, 659–663 (1965)

    Article  ADS  Google Scholar 

  28. H.U. Rahman, E.L. Ruden, K.D. Strohmaier, F.J. Wessel, G. Yur, Closed cycle cryogenic fiber extrusion system. Rev. Sci. Instrum. 67(10), 3533–3536 (1996). https://doi.org/10.1063/1.1147171

    Article  ADS  Google Scholar 

  29. I.V. Vinyar, A.Y. Lukin, Screw extruder for solid hydrogen. Tech. Phys. 45, 107–112 (2000)

    Article  Google Scholar 

  30. S.J. Meitner, J.M. Pfotenhauer, M.R. Andraschko, Viscous energy dissipation in frozen cryogens. AIP Conf. Proc. 985, 773–779 (2008). https://doi.org/10.1063/1.2908670

    Article  ADS  Google Scholar 

  31. R.W. Hill, B. Schneidmesser, Heat conduction in solid hydrogen. Bull. Inst. Intern. Frold. Annex. 115, 1956 (1956)

    Google Scholar 

  32. R.W. Hill, B. Schneidmesser, The thermal conductivity of solid hydrogen. Z. Phys. Chem. 257(16), 3–6 (1958)

    Google Scholar 

  33. R.F. Dwyer, G.A. Cook, O.E. Berwaldt, The thermal conductivity of solid and liquid parahydrogen. J. Chem. Eng. Data 11(3), 351–353 (1966). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  34. R.G. Bohn, The Thermal Conductivity of Solid Hydrogen (The Ohio State University, Columbus, 1969).

    Google Scholar 

  35. R. Bohn, C. Mate, Thermal conductivity of solid hydrogen. Phys. Rev. B 2(6), 2121–2126 (1970)

    Article  ADS  Google Scholar 

  36. W. Contreras, M. Lee, “Melting characteristics and bulk thermophyslcal properties of solid hydrogen,” (1972)

  37. D.E. Daney, Thermal conductivity of solid argon, deuterium, and methane from one-dimensional freezing rates. Cryogenics (Guildf) 11(4), 290–297 (1971). https://doi.org/10.1016/0011-2275(71)90185-8

    Article  ADS  Google Scholar 

  38. B. Gorodilov, I. Ya, N. Krupskii, V.G. Manzhelii, Thermal conductivity of solid deuterium. Sov. J. Low Temp. Phys. 3, 750 (1977)

    Google Scholar 

  39. J.E. Huebler, R.G. Bohn, Thermal conductivity of solid hydrogen with ortho-hydrogen between 20 and 70 at. %. Phys. Rev. B 17(4), 1991–1996 (1978)

    Article  ADS  Google Scholar 

  40. G. Ahlers, Some Properties of Solid Hydrogen at Small Molar Volumes (California University, California, 1963).

    Google Scholar 

  41. R.J. Roberts, J.G. Daunt, Specific heats of solid hydrogen, solid deuterium, and solid mixtures of hydrogen and deuterium. J. Low Temp. Phys. 6(1–2), 97–129 (1972). https://doi.org/10.1007/BF00630911

    Article  ADS  Google Scholar 

  42. R.F. Dwyer, G.A. Cook, Research on Rheologlc and Thermodynamic Properties of Solid and Slush Hydrogen (NY, Tonawanda, 1965).

    Google Scholar 

  43. P.C. Souers, Hydrogen Properties for Fusion Energy (University of California Press, Berkeley, California, 1986).

    Book  Google Scholar 

  44. I.F. Silvera, A. Driessen, J.A. de Wall, The equation of state of solid molecular hydrogen and deuterium. Phys. Lett. 68(2), 207–210 (1978)

    Article  Google Scholar 

  45. S. Kiesskalt, Untersuchungen an einer Kapsel Pumpe. VDI Zeitschr. 71, 453 (1927)

    Google Scholar 

  46. S.R. Prashanth et al., CFD modelling and performance analysis of a twin screw hydrogen extruder. Fusion Eng. Des. 138, 151–158 (2019). https://doi.org/10.1016/j.fusengdes.2018.11.014

    Article  Google Scholar 

  47. J.L. White, Z. Chen, Simulation of non-isothermal flow in modular co- rotating twin screw extrusion. Polym. Eng. Sci. 34(3), 229–237 (1994). https://doi.org/10.1002/pen.760340309

    Article  Google Scholar 

  48. H. Potente, W. Hanhart, T. Reski, Design and processing optimization of extruder screws. Polym. Eng. Sci. 34(11), 937–945 (1994). https://doi.org/10.1002/pen.760341111

    Article  Google Scholar 

  49. A. Eitzlmayr, G. Koscher, J. Khinast, A novel method for modeling of complex wall geometries in smoothed particle hydrodynamics. Comput. Phys. Commun. 185(10), 2436–2448 (2014). https://doi.org/10.1016/j.cpc.2014.05.014

    Article  ADS  Google Scholar 

  50. B. Vergnes, G. Della Valle, L. Delamare, A global computer software for polymer flows in corotating twin screw extruders. Polym. Eng. Sci. 38(11), 1781–1792 (1998). https://doi.org/10.1002/pen.10348

    Article  Google Scholar 

  51. H. Potente, M. Bastian, J. Flecke, Design of a compounding extruder by means of the SIGMA simulation software. Adv. Polym. Technol. 18(2), 147–170 (1999). https://doi.org/10.1002/(SICI)1098-2329(199922)18:2%3c147::AID-ADV5%3e3.0.CO;2-X

    Article  Google Scholar 

  52. J.L. White, E.K. Kim, J.M. Keum, H.C. Jung, D.S. Bang, Modeling heat transfer in screw extrusion with special application to modular self-wiping co-rotating twin-screw extrusion. Polym. Eng. Sci. 41(8), 1448–1455 (2001). https://doi.org/10.1002/pen.10844

    Article  Google Scholar 

  53. H. Potente, K. Kretschmer, Simulation and evaluation of compounding processes. Macromol. Mater. Eng. 287(11), 758–772 (2002). https://doi.org/10.1002/mame.200290005

    Article  Google Scholar 

  54. L. Prat, P. Guiraud, L. Rigal, C. Gourdon, A one dimensional model for the prediction of extraction yields in a two phases modified twin-screw extruder. Chem. Eng. Process. 41(9), 743–751 (2002). https://doi.org/10.1016/S0255-2701(02)00003-X

    Article  Google Scholar 

  55. S. Choulak, F. Couenne, Y. Le Gorrec, C. Jallut, P. Cassagnau, A. Michel, Generic dynamic model for simulation and control of reactive extrusion. Ind. Eng. Chem. Res. 43(23), 7373–7382 (2004). https://doi.org/10.1021/ie0342964

    Article  Google Scholar 

  56. B. Vergnes, F. Berzin, Modeling of reactive systems in twin-screw extrusion: challenges and applications. Comptes Rendus Chim. 9(11–12), 1409–1418 (2006). https://doi.org/10.1016/j.crci.2006.07.006

    Article  Google Scholar 

  57. W. Bahloul, O. Oddes, V. Bounor-Legare, F. Melis, P. Cassagnau, B. Vergnes, Reactive extrusion processing of polypropylene/TiO2 nanocomposites by in situ synthesis of the nanofillers: experiments and modeling. AIChE J. 57(8), 2174–2184 (2011). https://doi.org/10.1002/aic

    Article  Google Scholar 

  58. Z. Chen, J.L. White, Dimensionless non-newtonian isothermal simulation and scale-up considerations for modular intermeshing corotating twin screw extruders. Int. Polym. Process. 6(4), 304–310 (1991). https://doi.org/10.3139/217.910304

    Article  Google Scholar 

  59. W.E. Langlois, M.O. Deville, Slow Viscous Flow (Springer, Cham, 2014).

    Book  Google Scholar 

  60. Z. Tadmor, E. Broyer, C. Gutfinger, Flow analysis network (FAN)—A method for solving flow problems in polymer processing. Polym. Eng. Sci. 14(9), 660–665 (1974). https://doi.org/10.1002/pen.760140913

    Article  Google Scholar 

  61. M.H. Hong, J.L. White, Fluid mechanics of intermeshing counter-rotating twin screw extruders. Int. Polym. Process. 13(4), 342–346 (1998). https://doi.org/10.3139/217.980342

    Article  Google Scholar 

  62. M.H. Hong, J.L. White, Simulation of flow in an intermeshing modular counter-rotating twin screw extruder: non-newtonian and non-isothermal behavior. Int. Polym. Process. 14(2), 136–143 (1999). https://doi.org/10.3139/217.1538

    Article  Google Scholar 

  63. C. Gutfinger, E. Broyer, Z. Tadmor, Analysis of a cross head die with the flow analysis network (FAN) method. Polym. Eng. Sci. 15(5), 381–385 (1975). https://doi.org/10.1002/pen.760150511

    Article  Google Scholar 

  64. W. Szydlowski, J.L. White, An improved theory of metering in an intermeshing corotating twin-screw extruder. Adv. Polym. Technol. 7(2), 177–183 (1987). https://doi.org/10.1002/adv.1987.060070206

    Article  Google Scholar 

  65. W. Szydlowski, R. Brzoskowski, J.L. White, Modelling flow in an Intermeshing co-rotating Twin screw Extruder: flow in kneading discs. Int. Polym. Process. 1, 207–2014 (1987)

    Article  Google Scholar 

  66. B. David, T. Sapir, A. Nir, Z. Tadmor, Modelling twin rotor mixers and extruders. Int. Polym. Process. V 5(3), 155–163 (1990)

    Article  Google Scholar 

  67. M.H. Kim, W. Szydlowski, J.L. White, K. Min, A new model of flow in a tangential counter-rotating twin screw extruder. Adv. Polym. Technol. 9(1), 87–95 (1989). https://doi.org/10.1002/adv.1989.060090109

    Article  Google Scholar 

  68. M.H. Kim, J.L. White, Modelling flow in tangential counter-rotating twin screw extruders. Int. Polym. Process. V 5(3), 201–207 (1990)

    Article  Google Scholar 

  69. D. Bang, J.L. White, An improved flow simulation model for a tangential counter-rotating twin screw extruder. Int. Polym. Process. 11, 109–114 (1996)

    Article  Google Scholar 

  70. D. Bang, J.L. White, Modular tangential counter-rotating twin screw extrusion: non-newtonian and non-isothermal simulation. Int. Polym. Process. 12, 278–287 (1997)

    Article  Google Scholar 

  71. B. Hu, J.L. White, Simulation of 3-dimensional flow in internal mixers. Int. Polym. Process. 8, 18–29 (1993)

    Article  Google Scholar 

  72. B. Hu, J.L. White, Comparison of four-flighted and two-flighted internal mixer rotors using cylindrical coordinate hydrodynamic lubrication theory. Rubber Chem. Technol. 66(2), 257–275 (1993). https://doi.org/10.5254/1.3538310

    Article  Google Scholar 

  73. P.S. Kim, J.L. White, Simulation of flow in an intermeshing internal mixer and comparison of rotor designs. Rubber Chem. Technol. 69, 686–695 (1996)

    Article  Google Scholar 

  74. A. Sarhangi Fard, M.A. Hulsen, H.E.H. Meijer, N.M.H. Famili, P.D. Anderson, Adaptive non-conformal mesh refinement and extended finite element method for viscous flow inside complex moving geometries. Int. J. Numer. Methods Fluids 68(8), 1031–1052 (2012). https://doi.org/10.1002/fld.2595

    Article  MathSciNet  MATH  ADS  Google Scholar 

  75. T. Ishikawa, S.I. Kihara, K. Funatsu, 3-D non-isothermal flow field analysis and mixing performance evaluation of kneading blocks in a co-rotating twin srew extruder. Polym. Eng. Sci. 41(5), 840–849 (2001). https://doi.org/10.1002/pen.10781

    Article  Google Scholar 

  76. F. Bertrand, F. Thibault, L. Delamare, P.A. Tanguy, Adaptive finite element simulations of fluid flow in twin-screw extruders. Comput. Chem. Eng. 27(4), 491–500 (2003). https://doi.org/10.1016/S0098-1354(02)00236-3

    Article  Google Scholar 

  77. A. Sarhangi Fard, M.A. Hulsen, H.E.H. Meijer, N.M.H. Famili, P.D. Anderson, Tools to simulate distributive mixing in twin-screw extruders. Macromol. Theory Simul. 21(4), 217–240 (2012). https://doi.org/10.1002/mats.201100077

    Article  Google Scholar 

  78. A. Sarhangi Fard, P.D. Anderson, Simulation of distributive mixing inside mixing elements of co-rotating twin-screw extruders. Comput. Fluids 87, 79–91 (2013). https://doi.org/10.1016/j.compfluid.2013.01.030

    Article  Google Scholar 

  79. J.F. Hétu, F. Ilinca, Immersed boundary finite elements for 3D flow simulations in twin-screw extruders. Comput. Fluids 87, 2–11 (2013). https://doi.org/10.1016/j.compfluid.2012.06.025

    Article  MathSciNet  MATH  Google Scholar 

  80. M.L. Rathod, J.L. Kokini, Effect of mixer geometry and operating conditions on mixing efficiency of a non-Newtonian fluid in a twin screw mixer. J. Food Eng. 118(3), 256–265 (2013). https://doi.org/10.1016/j.jfoodeng.2013.04.020

    Article  Google Scholar 

  81. H. Sobhani, P.D. Anderson, H.H.E. Meijer, M.H.R. Ghoreishy, M. Razavi-Nouri, Non-Isothermal modeling of a non-newtonian fluid flow in a twin screw extruder using the fictitious domain method. Macromol. Theory Simul. 22(9), 462–474 (2013). https://doi.org/10.1002/mats.201300110

    Article  Google Scholar 

  82. A. Durin, P. De Micheli, H.C. Nguyen, C. David, R. Valette, B. Vergnes, Comparison between 1D and 3D approaches for twin-screw extrusion simulation. Int. Polym. Process. (2014). https://doi.org/10.3139/217.2951

    Article  Google Scholar 

  83. A. Ficarella, M. Milanese, D. Laforgia, Numerical study of the extrusion process in cereals production: part I. Fluid-dynamic analysis of the extrusion system. J. Food Eng. 73(2), 103–111 (2006). https://doi.org/10.1016/j.jfoodeng.2004.11.034

    Article  Google Scholar 

  84. A. Ficarella, M. Milanese, D. Laforgia, Numerical study of the extrusion process in cereals production: part II. Analysis of variance. J. Food Eng. 72(2), 179–188 (2006). https://doi.org/10.1016/j.jfoodeng.2004.11.035

    Article  Google Scholar 

  85. D.M. Kalyon, M. Malik, An integrated approach for numerical analysis of coupled flow and heat transfer in co-rotating twin screw extruders. Int. Polym. Process. (2007). https://doi.org/10.3139/217.1020

    Article  Google Scholar 

  86. M.A. Barrera, J.F. Vega, J. Martínez-Salazar, Three-dimensional modelling of flow curves in co-rotating twin-screw extruder elements. J. Mater. Process. Technol. 197(1–3), 221–224 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.028

    Article  Google Scholar 

  87. M. Bierdel, “Computational Fluid Dynamics: Co-Rotating Twin-Screw Extruders”, In Co-Rotating Twin-Screw Extruders (Hanser publishers, Munich, 2008).

    Google Scholar 

  88. E.O. Rodriguez, Numerical Simulation of Reactive Extrusion in Twin Screw Extruders (University of Waterloo, Waterloo, 2009).

    Google Scholar 

  89. R. Haghayeghi, V. Khalajzadeh, M.F. Farahani, H. Bahai, Experimental and CFD investigation on the solidification process in a co-rotating twin screw melt conditioner. J. Mater. Process. Technol. 210(11), 1464–1471 (2010). https://doi.org/10.1016/j.jmatprotec.2010.04.004

    Article  Google Scholar 

  90. K.V. Vyakaranam, B.K. Ashokan, J.L. Kokini, Evaluation of effect of paddle element stagger angle on the local velocity profiles in a twin-screw continuous mixer with viscous flow using finite element method simulations. J. Food Eng. 108(4), 585–599 (2012). https://doi.org/10.1016/j.jfoodeng.2010.12.001

    Article  Google Scholar 

  91. C.H. Yao, I. Manas-Zloczower, Influence of design on mixing efficiency in a variable intermeshing clearance mixer. Int. Polym. Process. 12(2), 92–103 (1997). https://doi.org/10.3139/217.970092

    Article  Google Scholar 

  92. J. Helmig, M. Behr, S. Elgeti, Boundary-conforming finite element methods for twin-screw extruders: unsteady—temperature-dependent—non-Newtonian simulations. Comput. Fluids 190, 322–336 (2019). https://doi.org/10.1016/j.compfluid.2019.06.028

    Article  MathSciNet  MATH  Google Scholar 

  93. T. Avalosse, “Numerical simulation of distribution mixing in 3-D flows.” Macromol. Syrnp. 112, 91–98 (1996)

    Article  Google Scholar 

  94. F. Bertrand, P.A. Tanguy, F. Thibault, A three-dimensional fictitious domain method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 25(6), 719–736 (1997). https://doi.org/10.1002/(sici)1097-0363(19970930)25:6%3c719::aid-fld585%3e3.3.co;2-b

    Article  MathSciNet  MATH  ADS  Google Scholar 

  95. T. Avalosse, Y. Rubin, Analysis of mixing in corotating twin screw extruders through Numerical Simulation. Int. Polym. Process. 15(2), 117–123 (2000)

    Article  Google Scholar 

  96. B. Alsteens, V. Legat, T. Avalosse, Parametric study of the mixing efficiency in a kneading block section of a twin-screw extruder. Int. Polym. Proc. 19(3), 207–217 (2004). https://doi.org/10.3139/217.1836

    Article  Google Scholar 

  97. X.M. Zhang, L.F. Feng, W.X. Chen, G.H. Hu, Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder. Polym. Eng. Sci. 49(9), 1772–1783 (2009). https://doi.org/10.1002/pen.21404

    Article  Google Scholar 

  98. Z. Dai, F. Wang, Y. Huang, K. Song, A. Iio, SPH-based numerical modeling for the post-failure behavior of the landslides triggered by the 2016 Kumamoto earthquake. Geoenviron. Disasters 3(1), 1–14 (2016). https://doi.org/10.1186/s40677-016-0058-5

    Article  Google Scholar 

  99. J.J. Monaghan, J.B. Kajtar, SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180(10), 1811–1820 (2009). https://doi.org/10.1016/j.cpc.2009.05.008

    Article  MathSciNet  MATH  ADS  Google Scholar 

  100. M. Gómez-Gesteira, R.A. Dalrymple, Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J. Waterw. Port Coast. Ocean Eng. 130(2), 63–69 (2004). https://doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)

    Article  Google Scholar 

  101. M. Gomez-Gesteira, B.D. Rogers, D. Violeau, J.M. Grassa, A.J.C. Crespo, Foreword: SPH for free-surface flows. J. Hydraul. Res. (2010). https://doi.org/10.3826/jhr.2010.0014

    Article  Google Scholar 

  102. R.A. Dalrymple, O. Knio, SPH modelling of water waves. Coast. Dyn. 1(1999), 779–787 (2001). https://doi.org/10.1061/40566(260)80

    Article  Google Scholar 

  103. H. Takeda, S.M. Miyama, M. Sekiya, Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92(5), 939–960 (1994). https://doi.org/10.1143/ptp/92.5.939

    Article  ADS  Google Scholar 

  104. P.W. Randles, L.D. Libersky, Smoothed particle hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996). https://doi.org/10.1016/S0045-7825(96)01090-0

    Article  MathSciNet  MATH  ADS  Google Scholar 

  105. A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003). https://doi.org/10.1016/S0021-9991(03)00324-3

    Article  MATH  ADS  Google Scholar 

  106. J. Feldman, J. Bonet, Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72, 295–324 (2007). https://doi.org/10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  107. M. Ferrand, B. D. Rogers, D. Laurence, D. Violeau, “Consistent wall boundary treatment for laminar and turbulent flows in SPH,” In 6th International SPHERIC Workshop, 3, 275–282 (2011)

  108. L. M. Gonz´alez, A. Souto-Iglesias, F. Maci`, A. Colagrossi, and M. Antuono, “On the boundary condition enforcement in SPH,” In 7th Internation SPHERIC Workshop, pp. 283–290 (2011)

  109. M. Robinson, P. Cleary, J. Monaghan, Analysis of mixing in a twin cam mixer using smoothed particle hydrodynamics. AIChE J. 54(8), 1987–1998 (2008). https://doi.org/10.1002/aic

    Article  Google Scholar 

  110. T. Avalosse, M.J. Crochet, Finite-element simulation of mixing: 1. two-dimensional flow in periodic geometry. AIChE J. 43(3), 577–587 (1997). https://doi.org/10.1002/aic.690430303

    Article  Google Scholar 

  111. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. (1992). https://doi.org/10.1887/0750304588/b485b3

    Article  MATH  Google Scholar 

  112. J.J. Monaghan, Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994). https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  ADS  Google Scholar 

  113. J.J. Monaghan, SPH without a tensile instability. J. Comput. Phys. 159(2), 290–311 (2000). https://doi.org/10.1006/jcph.2000.6439

    Article  MATH  ADS  Google Scholar 

  114. J.J. Monaghan, Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005). https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  ADS  Google Scholar 

  115. A. Eitzlmayr, J. Khinast, Co-rotating twin-screw extruders: Detailed analysis of conveying elements based on smoothed particle hydrodynamics. Part 1: hydrodynamics. Chem. Eng. Sci. 134, 861–879 (2015). https://doi.org/10.1016/j.ces.2015.04.055

    Article  Google Scholar 

  116. A. Eitzlmayr, J. Khinast, Co-rotating twin-screw extruders: detailed analysis of conveying elements based on smoothed particle hydrodynamics. Part 2: mixing. Chem. Eng. Sci. 134, 880–886 (2015). https://doi.org/10.1016/j.ces.2015.05.035

    Article  Google Scholar 

  117. M. Robinson, P.W. Cleary, Effect of geometry and fill level on the transport and mixing behaviour of a co-rotating twin screw extruder. Comput. Part. Mech. 6(2), 227–247 (2019). https://doi.org/10.1007/s40571-018-0210-y

    Article  Google Scholar 

  118. P. Wittek, G.G. Pereira, M.A. Emin, V. Lemiale, P.W. Cleary, Accuracy analysis of SPH for flow in a model extruder with a kneading element. Chem. Eng. Sci. (2018). https://doi.org/10.1016/j.ces.2018.05.007

    Article  Google Scholar 

  119. J. Wildmoser, Impact of Low Temperature Extrusion Processing on Disperse Microstructure in Ice Cream System (Swiss Federal Institute of Technology, Zürich, Switzerland, 2004).

    Google Scholar 

Download references

Funding

The research was funded by Board of Research in Nuclear Sciences Grant No. 39/14/21/2016-BRNS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumar Arumugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, P.S., Arumugam, S.K., Gangradey, R. et al. Development of Cryogenic Extrusion Techniques and Modelling of a Twin Screw Extruder: A Review. J Fusion Energ 40, 4 (2021). https://doi.org/10.1007/s10894-021-00297-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-021-00297-2

Keywords

Navigation