Skip to main content
Log in

Solitary wave solutions and global well-posedness for a coupled system of gKdV equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this work, we consider the initial-value problem associated with a coupled system of generalized Korteweg–de Vries equations. We present a relationship between the best constant for a Gagliardo–Nirenberg type inequality and a criterion for the existence of global solutions in the energy space. We prove that such a constant is directly related to the existence problem of solitary wave solutions with minimal mass, the so-called ground state solutions. A characterization of the ground states and the orbital instability of the solitary waves are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcon, E., Angulo, J., and Montenegro, J. F. Stability and instability of solitary waves for a nonlinear dispersive system. Nonlinear Anal. 36 (1999), 1015–1035.

    Article  MathSciNet  Google Scholar 

  2. Angulo, J. Nonlinear dispersive equations, vol. 156 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2009. Existence and stability of solitary and periodic travelling wave solutions.

  3. Biello, J. A. Nonlinearly coupled KdV equations describing the interaction of equatorial and midlatitude Rossby waves. Chin. Ann. Math. Ser. B 30, 5 (2009), 483–504.

    Article  MathSciNet  Google Scholar 

  4. Biello, J. A., and Majda, A. J. The effect of meridional and vertical shear on the interaction of equatorial baroclinic and barotropic Rossby waves. Stud. Appl. Math. 112, 4 (2004), 341–390.

    Article  MathSciNet  Google Scholar 

  5. Bona, J., and Chen, H. Stability of solitary-wave soltutions of systems of dispersive equations. Appl. Math. Optim. 75 (2017), 27–53.

    Article  MathSciNet  Google Scholar 

  6. Bona, J., Souganidis, P., and Strauss, W. Stability and stability of solitary waves of Korteweg–de-Vries type equation. Proc. Roy. Soc. London Ser. A 411 (1987), 395–412.

    MathSciNet  MATH  Google Scholar 

  7. Bona, J. L., Ponce, G., Saut, J. C., and Tom, M. M. A model system for strong interaction between internal solitary waves. Commun. Math. Phys. 143 (1992), 287–313.

    Article  MathSciNet  Google Scholar 

  8. Cazenave, T. Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

  9. Colliander, J., Keel, M., G. Staffilani, H. Takaoka, and Tao, T. Sharp global well-posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Amer. Math. Soc. 16, 3 (2003), 705–749.

  10. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., and Tao, T. Global well-posedness for KdV in sobolev spaces of negative index. Electron. J. Differential Equations 2001 (2001), 1–7.

    MathSciNet  MATH  Google Scholar 

  11. Corcho, A., and Panthee, M. Global well-posedness for a coupled modified KdV-system. Bull. Braz. Math. Soc. (N.S.) 43, I (2012), 27–57.

  12. Correia, S. A. Ground-states for systems of \(M\) coupled semilinear Schrödinger equations with attraction-repulsion effects: characterization and perturbation results. Nonlinear Anal. 140 (2016), 112–129.

    Article  MathSciNet  Google Scholar 

  13. Esfahani, A., and Pastor, A. Two dimensional solitary waves in shear flows. Calc. Var. Partial Differential Equations 57, 4 (2018), 102.

    Article  MathSciNet  Google Scholar 

  14. Fanelli, L., and Montefusco, E. On the blow-up threshold for weakly coupled nonlinear Schrödinger equations. J. Phys. A Math. Theor. 40 (2007), 14139–14150.

    Article  Google Scholar 

  15. Farah, L., Linares, F., and Pastor, A. The supercritical generalized KdV equations: global well-posedness in the energy space and below. Math. Res. Lett. 18, 02 (2011), 357–377.

    Article  MathSciNet  Google Scholar 

  16. Gear, T. A., and Grimshaw, R. Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 70, 3 (1984), 235–258.

    Article  MathSciNet  Google Scholar 

  17. Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

  18. Guo, Y., Simon, K., and Titi, E. S. Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello. Commun. Math. Sci. 13, 5 (2015), 1261–1288.

    Article  MathSciNet  Google Scholar 

  19. Hayashi, N., Ozawa, T., and Tanaka, K. On a system of nonlinear Schrödinger equations with quadratic interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 661–690.

  20. Lieb, E. On the lowest eigenvalue of the laplacian for the intersection of two domais. Invent. Math. 74 (1983), 441–448.

    Article  MathSciNet  Google Scholar 

  21. Linares, F., and Panthee, M. On the cauchy problem for a coupled system of KdV equations. Commun. Pure Appl. Anal. 3, 3 (2004), 417–431.

    Article  MathSciNet  Google Scholar 

  22. Linares, F., and Ponce, G. Introduction to nonlinear dispersive equations. Universitext. Springer, New York, 2009.

    MATH  Google Scholar 

  23. Lopes, O. Sufficient conditions for minima of some translation invariant functionals. Differential Integral Equations 10, 2 (1997), 231–244.

    MathSciNet  MATH  Google Scholar 

  24. Lopes, O. Variational systems defined by improper integrals. In International Conference on Differential Equations (Lisboa, 1995). World Sci. Publ., River Edge, NJ, 1998, pp. 137–153.

  25. Maia, L. A., Montefusco, E., and Pellaci, B. Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differential Equations 229 (2006), 743–767.

    Article  MathSciNet  Google Scholar 

  26. Majda, A. J., and Biello, J. A. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmospheric Sci. 60 (2003), 1809–1821.

    Article  MathSciNet  Google Scholar 

  27. Noguera, N., and Pastor, A. On the dynamics of a quadratic schrödinger system in dimension \(n=5\). Dyn. Partial Differ. Equ. 17, 1 (2020), 1–17.

    Article  MathSciNet  Google Scholar 

  28. Oh, T. Diophantine conditions in global well-posedness for coupled KdV-type systems. Electron. J. Differential Equations (2009), No. 52, 48.

  29. Oh, T. Diophantine conditions in well-posedness theory of coupled KdV-type systems: local theory. Int. Math. Res. Not. IMRN, 18 (2009), 3516–3556.

    MathSciNet  MATH  Google Scholar 

  30. Oliveira, F., and Pastor, A. On a Schrödinger system arising in nonlinear optics. arXiv:1810.08231.

  31. Panthee, M., and Scialom, M. On the cauchy problem for a coupled system of KdV equations: critical case. Adv. Differential Equations 13, 1–2 (2008), 1–26.

    MathSciNet  MATH  Google Scholar 

  32. Pastor, A. Weak concentration and wave operator for a 3D coupled nonlinear Schrödinger system. J. Math. Phys. 56, 2 (2015), 021507.

    Article  MathSciNet  Google Scholar 

  33. Willem, M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Cambridge, 1996.

    Book  Google Scholar 

Download references

Acknowledgements

This work is part of the Ph.D. Thesis of the first author, which was concluded at IMECC-UNICAMP. The first author acknowledges the financial support from Capes/Brazil and CNPq/Brazil. The second author is partially supported by CNPq/Brazil Grants 402849/2016-7 and 303762/2019-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Pastor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A., Pastor, A. Solitary wave solutions and global well-posedness for a coupled system of gKdV equations. J. Evol. Equ. 21, 2167–2193 (2021). https://doi.org/10.1007/s00028-021-00676-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00676-4

Keywords

Mathematics Subject Classification

Navigation