Skip to main content

Advertisement

Log in

Trace element and stable isotope variations in larger benthic foraminifer Baculogypsina sphaerulata: A potential proxy of seawater temperature

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Larger benthic foraminifera (LBF) contribute significantly to the modern reef carbonates. They were also the major producers of carbonate in the shallow marine environments of the Paleogene. It is thus imperative to investigate their potential as a paleotemperature proxy. It is common to calculate past seawater temperatures using trace elements and stable isotope proxies on foraminiferal calcite. The various LBF genera comprise tests with different MgCO3% and exhibit vital effects, making it important to carry out genus-specific temperature calibration studies. For the present study, live specimens of Baculogypsina sphaerulata were collected over seven months from reef flats of Akajima (Okinawa, Japan). The whole-shells of B. sphaerulata from each of the seven sampling months were analyzed using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) and IRMS (Isotope Ratio Mass Spectrometer) techniques. The relationship between Mg/Ca and δ18O with seawater temperature is established, and thus its potentiality for temperature calibration is discussed. The following proxy-temperature calibrations are proposed in this study: (i) Mg/Ca (mmol/mol) = 0.0267e0.3389T and (ii) T (oC) = 19.0–2.94 (δ18Ofδ18Ow).

Research Highlights

  1. 1.

    The geochemical composition of Baculogypsina sphaerulata was studied to understand its potentiality for paleotemperature calibration.

  2. 2.

    The regression should be always over the complete range of growth temperatures experienced by the foraminifer for better correlation.

  3. 3.

    A genus-specific temperature calibration is important in the case of larger benthic foraminifera.

  4. 4.

    The proxy-temperature calibrations for Baculogypsina sphaerulata are proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anand P, Elderfield H and Conte M H 2003 Calibration of Mg/Ca thermometry in planktonic foraminifera from sediment trap time series; Paleoceanography 18(2) 1050, https://doi.org/10.1029/2002PA000846.

    Article  Google Scholar 

  • Barker S, Greaves M and Elderfield H 2003 A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry; Geochem. Geophys. Geosyst. 4(9) 8407, https://doi.org/10.1029/2003GC000559.

    Article  Google Scholar 

  • Bemis B E, Spero H J, Bijma J and Lea D W 1998 Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised palaeotemperature equations; Paleoceanography 13 150–160.

    Article  Google Scholar 

  • Bentov S and Erez J 2006 Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective; Geochem. Geophys. Geosyst. 7 1–11, https://doi.org/10.1029/2005GC001015.

    Article  Google Scholar 

  • Bouvier-Soumagnac Y and Duplessy J-C 1985 Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediment: Implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle; J. Foram. Res. 15 302–320.

    Article  Google Scholar 

  • Briguglio A and Hohenegger J 2014 Growth oscillation in larger foraminifera; Paleobiology 40(3) 494–509.

    Article  Google Scholar 

  • Chave K E 1962 Factors influencing the mineralogy of carbonate sediments; Limnol. Oceanogr. 7 218–223.

    Article  Google Scholar 

  • Dissard D, Nehrke G, Reichart G-J and Bijma J 2010a The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments; Geochim. Cosmochim. Acta 74 928–940.

    Article  Google Scholar 

  • Dissard D, Nehrke G, Reichart G J and Bijma J 2010b Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with Ammonia tepida; Biogeosci. 7(1) 81–93.

    Article  Google Scholar 

  • Dueñas-Bohórquez A, Da Rocha R E, Kuroyanagi A, Bijma J and Reichart G-J 2009 Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera; Mar. Micropaleontol. 73 178–189.

    Article  Google Scholar 

  • Dueñas-Bohórquez A, Da Rocha R E, Kuroyanagi A, De Nooijer L J, Bijma J and Reichart G-J 2011 Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer; Geochim. Cosmochim. Acta 75 520–532.

    Article  Google Scholar 

  • Evans D and Müller W 2013 LA-ICPMS elemental imaging of complex discontinuous carbonates: An example using large benthic foraminifera; J. Anal. Atom. Spectrom. 28 1039–1044.

    Article  Google Scholar 

  • Fehrenbacher J and Martin P 2010 Mg/Ca variability of the planktonic foraminifera G. ruber s.s. and N. dutertrei from shallow and deep cores determined by electron microprobe image mapping; Earth Environ. Sci. 9(012018).

  • Groeneveld J and Filipsson H L 2013 Mg/Ca and Mn/Ca ratios in benthic foraminifera: The potential to reconstruct past variations in temperature and hypoxia in shelf regions; Biogeosci. 10 5125–5138, https://doi.org/10.5194/bg-10-5125-2013.

    Article  Google Scholar 

  • Hohenegger J 1994 Distribution of living larger foraminifera NW of Sesoko-Jima, Okinawa, Japan; Mar. Ecol. 15 291–334.

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y and Tatzreiter F 1999 Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan; Mar. Micropaleontol. 36 109–168.

    Article  Google Scholar 

  • Hosono T, Lopati P and Kayanne H 2013 Estimation of the growth pattern of Baculogypsina sphaerulata (Foraminifera) in a tropical environment using a floating chamber method; J. Exp. Mar. Biol. Ecol. 448 156–161.

    Article  Google Scholar 

  • Khanolkar S, Schiebel R, Singh A, Saraswati P K, Jochum K P, Weis U and Hauga G 2021 Intra‐test variations in trace element composition of Amphistegina lessonii using femtosecond‐laser ablation‐ICP‐mass spectrometry: A field study from Akajima, Okinawa Prefecture, Japan; Geochem. Geophys. Geosyst. 22 e2020GC009443. https://doi.org/10.1029/2020GC009443.

    Article  Google Scholar 

  • Lea D W, Mashiotta T A and Spero H J 1999 Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing; Geochim; Cosmochim. Acta 63 2369–2379.

    Article  Google Scholar 

  • Lear C H, Rosenthal Y and Slowey N 2002 Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration; Geochim; Cosmochim. Acta 66 3375–3387, https://doi.org/10.1016/S0016-7037(02)00941-9.

    Article  Google Scholar 

  • Maeda A, Fujita K, Horikawa K, Suzuki A, Yoshimura T, Tamenori Y and Kawahata H 2017 Evaluation of oxygen isotope and Mg/Ca ratios in high-magnesium calcite from benthic foraminifera as a proxy for water temperature; J. Geophys. Res. Biogeosci. 122 185–199, https://doi.org/10.1002/2016JG003587.

    Article  Google Scholar 

  • McConnaughey T 1989 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns; Geochim. Cosmochim. Acta 53 151–162.

    Article  Google Scholar 

  • Raitzsch M, Dueñas-Bohórquez A, Reichart G-J, De Nooijer L J and Bijma J 2010 Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: Impact of calcium concentration and associated calcite saturation state; Biogeosci. 7 869–881.

    Article  Google Scholar 

  • Raja R, Saraswati P K, Rogers K and Iwao K 2005 Magnesium and strontium compositions of Recent symboint bearing benthic foraminifera; Mar. Micropaleontol. 58 31–44.

    Article  Google Scholar 

  • Raja R, Saraswati P K and Iwao K 2007 A field-based study on variation in Mg/Ca and Sr/Ca in larger benthic foraminifera; Geochem. Geophys. Geosyst. 8 Q10012.

    Article  Google Scholar 

  • Rathburn A E and De Deckker P 1997 Magnesium and strontium compositions of Recent benthic foraminifera from the coral sea, Australia and Prydz Bay, Antarctica; Mar. Micropaleontol. 32 231–248.

    Article  Google Scholar 

  • Rosenthal Y, Boyle E A and Slowey N 1997 Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama bank: Prospects for thermocline paleoceanography; Geochim. Cosmochim. Acta 61 3633–3643.

    Article  Google Scholar 

  • Russell A D, Hönisch B, Spero H J and Lea D W 2004 Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera; Geochim. Cosmochim. Acta 68 4347–4361.

    Article  Google Scholar 

  • Sakai K 1981 Population study of the benthic foraminifer Baculogypsina sphaerulata on the Okinawan reef flat and preliminary estimation of its annual production; In: Proc. Fourth Int. Coral Reef Symp., Manila 2 763–766.

  • Saraswati P K, Seto K and Nomura R 2004 Oxygen and carbon isotopic variation in co-existing larger foraminifera from a reef flat at Akajima, Okinawa, Japan; Mar. Micropaleontol. 50 339–349.

    Article  Google Scholar 

  • Saraswati P K, Singh A, Rogers K, Sanyal P, Pande K and Iwao K 2017 δ18O of larger benthic foraminifera: Temperature calibration for shallow marine tropical–subtropical carbonates; Micropaleontology and its Applications Scientific Publishers, India, pp. 59–70.

  • Scheibner C, Speijer R P and Marzouk A M 2005 Turnover of larger foraminifera during the Paleocene–Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems; Geology 33(6) 493–496.

    Article  Google Scholar 

  • Spero H J, Mielke K M, Kalve E M, Lea D W and Pak D K 2003 Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr; Paleoceanography 18(1) 1022, https://doi.org/10.1029/2002PA000814.

    Article  Google Scholar 

  • Toler S K, Hallock P and Schijf J 2001 Mg/Ca ratios in stressed foraminifera, Amphistegina gibbosa, from the Florida Key; Mar. Micropaleontol. 43 199–206.

    Article  Google Scholar 

  • Toyofuku T, Kitazato H, Kawahata H, Tsuchiya M and Nohara M 2000 Evaluation of Mg/Ca thermometry in foraminifera: Comparison of experimental results and measurements in nature; Paleoceanography 15 456–464.

    Article  Google Scholar 

  • Van Dijk I, Barras C, De Nooijer L J, Mouret A, Geerken E, Oron S and Reichart G J 2019 Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite; Biogeosci. 16(10) 2115–2130.

    Article  Google Scholar 

  • Wefer G and Berger W H 1980 Stable isotopes in benthic foraminifera: Seasonal variation in large tropical species; Science 209 803–805.

    Article  Google Scholar 

Download references

Acknowledgements

AS is thankful to the Department of Earth Sciences, IIT Bombay, for providing facilities to carry out trace element analysis and to Prof Sanjeev Kumar, PRL Ahmedabad, for stable isotope analysis. The comments of Dr Sonal Khanolkar on the first draft improved the manuscript. I am also thankful to Dr A K Ghosh and an anonymous reviewer for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

Asmita Singh carried out the trace element and stable isotope analysis, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Asmita Singh.

Additional information

Communicated by Joydip Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A. Trace element and stable isotope variations in larger benthic foraminifer Baculogypsina sphaerulata: A potential proxy of seawater temperature. J Earth Syst Sci 130, 65 (2021). https://doi.org/10.1007/s12040-021-01564-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01564-8

Keywords

Navigation