Skip to main content
Log in

Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the time fractional system of fluid-conveying single-walled carbon nanotube (SWCNT), the generalization of SWCNT system which plays important roles in many applied fields. The corresponding Lie symmetries admitted by this fractional system in Riemann–Liouville sense are obtained and symmetry reductions are performed. In addition, based on the above symmetries, the conservation laws are derived using new Noether theorem. Furthermore, analytical solution and numerical series solution to the initial value problem of time fractional SWCNT system in Caputo sense are constructed by applying invariant subspace method and q-homotopy analysis method, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bin Z (2012) G’/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun Theor Phys 58(5):623–630

    Article  MathSciNet  MATH  Google Scholar 

  • Chang WJ, Lee HL (2009) Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko model. Phys Lett A 373(10):982–985

    Article  MATH  Google Scholar 

  • Choudhary S, Daftardar-Gejji V (2017) Invariant subspace method: a tool for solving fractional partial differential equations. Fract Calc Appl Anal 20(2):477–493

    Article  MathSciNet  MATH  Google Scholar 

  • Choudhary S, Daftardar-Gejji V (2019) Solving systems of multi-term fractional PDEs: invariant subspace approach. Int J Model Simul Sci Comput 10(1):1941010(25p)

    Article  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • EI-Tawil MA, Huseen SN (2012) The Q-homotopy analysis method (Q-HAM). Int J Appl Math Mech 8(15):51–75

    Google Scholar 

  • Galaktionov V, Svirshchevskii S (2006) Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Gazizov RK, Kasatkin AA (2013) Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput Math Appl 66(5):576–584

    Article  MathSciNet  MATH  Google Scholar 

  • Gazizov RK, Kasatkin AA, Lukashchuk SY (2007) Continuous transformation groups of fractional differential equations. Vestnik Usatu 9:125–135

    Google Scholar 

  • Gazizov RK, Kasatkin AA, Yu S (2009) Lukashchuk, Symmetry properties of fractional diffusion equations. Phys Scr 136:014–016

    Google Scholar 

  • Guo BL, Pu XK, Huang FH (2015) Fractional partial differential equations and their numerical solutions. Science Press, Beijing

    Book  MATH  Google Scholar 

  • Horstman D (2002) On the existence of radially symmetric blow-up solutions for the Keller-Segel model. J Math Biol 44(5):463–478

    Article  MathSciNet  Google Scholar 

  • Huang Q, Zhdanov R (2014) Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative. Phys A 409:110–118

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333(1):311–328

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov NH, Avdonina ED (2013) Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws. Russ Math Surv 68(5):889–921

    Article  MATH  Google Scholar 

  • Inc M, Yusuf A, Aliyu AI, Baleanu D (2018) Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis. Phys A 493:94–106

    Article  MathSciNet  MATH  Google Scholar 

  • Inc M, Yusuf A, Aliyu AI, Baleanu D (2018) Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equaitons. Phys A 496:371–383

    Article  MathSciNet  MATH  Google Scholar 

  • Iyiola OS (2013) A numerical study of ito equation and Sawada–Kotera equation both of time-fractional type. Adv Math Sci J 2(2):71–79

    Google Scholar 

  • Iyiola OS, Ojo GO (2015) On the analytical solution of Fornberg–Whitham equation with the new fractional derivative. Pramana J Phys 85(4):567–575

    Article  Google Scholar 

  • Iyiola OS, Olayinka OG (2014) Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations. Ain Shams Eng J 5:999–1004

    Article  Google Scholar 

  • Jaber KK, Ahmad RS (2018) Analytical solution of the time fractional Navier–Stokes equation. Ain Shams Eng J 9:1917–1927

    Article  Google Scholar 

  • Liu HZ (2013) Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud Appl Math 131:317–330

    Article  MathSciNet  MATH  Google Scholar 

  • Liu HZ, Geng YX (2013) Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J Differ Equ 254(5):2289–2303

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WH, Zhang YF (2019) Time-fractional Drinfeld–Sokolov–Wilson system: lie symmetry analysis, analytical solutions and conservation laws. Eur Phys J Plus 134(3):126

    Article  Google Scholar 

  • Liu HZ, Wang ZG, Xin XP, Liu XQ (2018) Symmetries, symmetry reductions and exact solutions to the generalized nonlinear fractional wave equaitons. Commun Theor Phys 70(7):14–18

    Article  MATH  Google Scholar 

  • Lu B (2012) The first integral method for some time fractional differential equations. J Math Anal Appl 395:684–693

    Article  MathSciNet  MATH  Google Scholar 

  • Lukashchuk SY (2015) Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn 80:791–802

    Article  MathSciNet  MATH  Google Scholar 

  • Majlesi A, Ghehsareha HR, Zaghian A (2017) On the fractional Jaulent-Miodek equation associated with energy-dependent Schrödinger potential: Lie symmetry reductions, explicit exact solutions and conservation laws. Eur Phys J Plus 132(12):516

    Article  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Momani S, Odibat Z (2006) Analytical solution of a time-fractional Navier-Stokes equation by Adomian decompostion method. Appl Math Comput 177:488–494

    MathSciNet  MATH  Google Scholar 

  • Noether E (1971) Invariant variation problems. Transp Theor Stat 1:186–207

    Article  MathSciNet  MATH  Google Scholar 

  • Odibat Z, Momani S (2008) A generalized differential transform method for linear partial differential equations of fractional order. Appl Math Lett 21(2):194–199

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, London

    MATH  Google Scholar 

  • Ovsiannikov LV (1982) Group analysis of differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Prakash A, Goyal M, Gupta S (2020) Q-homotopy analysis method for fractional Bloch model arising in nuclear magnetic resonance via the Laplace transform. Indian J Phys 94(4):507–520

    Article  Google Scholar 

  • Saberi E, Hejazi SR (2018) Lie symmetry analysis, conservation laws and exact solutions of the time-fractional generalized Hirota-Satsuma coupled KdV system. Phys A 492:296–307

    Article  MathSciNet  Google Scholar 

  • Sahadevan R, Bakkyaraj T (2012) Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equation. J Math Anal Appl 393(2):341–347

    Article  MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2016) Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn 85(1):659–673

    Article  MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos Soliton Fract 104:107–120

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo S, Ray SS (2019) On the conservation laws and invariant analysis for time-fractional coupled Fitzhugh–Nagumo equations using the Lie symmetry analysis. Eur Phys J Plus 134(2):83

    Article  Google Scholar 

  • Samko S, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Yverdon

    MATH  Google Scholar 

  • Singla K, Gupta RK (2017) Conservation laws for certain time fractional nonlinear systems of partial differential equations. Commun Nonlinear Sci Numer Simul 53:10–21

    Article  MathSciNet  MATH  Google Scholar 

  • Singla K, Gupta RK (2017) Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws. Nonlinear Dyn 89(1):321–331

    Article  MathSciNet  MATH  Google Scholar 

  • Tchier F, Inc M, Yusuf A, Aliyu AI, Baleanu D (2018) Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws and numerical approximations. Eur Phys J Plus 133(6):240

    Article  Google Scholar 

  • Wang LZ, Wang DJ, Shen SF, Huang Q (2018) Lie point symmetry analysis of the Harry-Dym type equation with Riemann–Liouville fractional derivative. Acta Math Appl Sinica English Ser 34(3):469–477

    Article  MathSciNet  MATH  Google Scholar 

  • Wu G, Lee EWM (2010) Fractional variational iteration method and its application. Phys Lett A 374(25):2506–2509

    Article  MathSciNet  MATH  Google Scholar 

  • Yang SJ, Hua CC (2014) Lie symmetry reductions and exact solutions of a coupled KdV-Burgers equation. Appl Math Comput 234:579–583

    MathSciNet  MATH  Google Scholar 

  • Yang Y, Wang LZ (2020) Lie symmetry analysis, conservation laws and separation variable type solutions of the time-fractional porous medium equation. Wave Random Complex. https://doi.org/10.1080/17455030.2020.1810358

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant nos. 11771352, 11871396), the Natural Science Foundation of Shaanxi Province (Grant no. 2020JM-431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Agnieszka Malinowska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Hou, J. & Wang, L. Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube. Comp. Appl. Math. 40, 103 (2021). https://doi.org/10.1007/s40314-021-01486-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01486-7

Keywords

Navigation