Skip to main content

Advertisement

Log in

Interleukin-17A mediates tobacco smoke–induced lung cancer epithelial-mesenchymal transition through transcriptional regulation of ΔNp63α on miR-19

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Interleukin-17A (IL-17A) is an essential inflammatory cytokine in the progress of carcinogenesis. Tobacco smoke (TS) is a major risk factor of lung cancer that influences epithelial-mesenchymal transition (EMT) process. However, the potential mechanism by which IL-17A mediates the progression of lung cancer in TS-induced EMT remains elusive. In the present study, it was revealed that the IL-17A level was elevated in lung cancer tissues, especially in tumor tissues of cases with experience of smoking, and a higher IL-17A level was correlated with induction of EMT in those specimens. Moreover, the expression of ΔNp63α was increased in IL-17A-stimulated lung cancer cells. ΔNp63α functioned as a key oncogene that bound to the miR-17-92 cluster promoter and transcriptionally increased the expression of miR-19 in lung cancer cells. Overexpression of miR-19 promoted EMT in lung cancer with downregulation of E-cadherin and upregulation of N-cadherin, while its inhibition suppressed EMT. Finally, the upregulated levels of IL-17A, ΔNp63α, and miR-19 along with the alteration of EMT-associated biomarkers were found in lung tissues of TS-exposed mice. Taken together, the abovementioned results suggest that IL-17A increases ΔNp63α expression, transcriptionally elevates miR-19 expression, and promotes TS-induced EMT in lung cancer. These findings may provide a new insight for the identification of therapeutic targets for lung cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and materials are available and transparent.

Abbreviations

ChIP:

chromatin immunoprecipitation

CSE:

cigarette smoke extract

ELISA:

enzyme- linked immunosorbent assay

EMT:

epithelial-mesenchymal transition

FA:

filtered air

H&E:

hematoxylin & eosin

HBE:

human bronchial epithelial

IHC:

immunohistochemical

IL-17A:

interleukin-17A

IL-17RA:

IL-17 receptor A

IL-17RC:

IL-17 receptor C

LC:

lung cancer

miR:

microRNA

NSCLC:

non-small cell lung cancer

TP63:

the human p63 gene

TP63αRE:

TP63α the response element

TS:

tobacco smoke

WB:

Western blot

References

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87–98.

    Article  CAS  PubMed  Google Scholar 

  • Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M, et al. Interleukin-17a promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to pd-1 blockade. J Thorac Oncol. 2017;12:1268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aljagthmi AA, Hill NT, Cooke M, Kazanietz MG, Abba MC, Long W, et al. Deltanp63alpha suppresses cells invasion by downregulating PKCgamma/RAC1 signaling through mir-320a. Cell Death Dis. 2019;10:680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrew JD, Pratima C, Amanda B, James D. ΔNP63α transcriptionally activates chemokine receptor 4 (CXCR4) expression to regulate breast cancer stem cell activity and chemotaxis. Mol Cancer Ther. 2015;14:225–35.

    Article  CAS  Google Scholar 

  • Anzalone G, Albano GD, Montalbano AM, Riccobono L, Bonanno A, Gagliardo R, et al. IL-17a-associated IKK-alpha signaling induced TSLP production in epithelial cells of COPD patients. Exp Mol Med. 2018;50:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Bankhead AR, McMaster T, Wang Y, Boonstra PS, Palmbos PL. Tp63 isoform expression is linked with distinct clinical outcomes in cancer. Ebiomedicine. 2020;51:102561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B, Martorana PA, et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J. 2005;25:15–22.

    Article  CAS  PubMed  Google Scholar 

  • Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA, et al. P63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol. 2006;8:551–61.

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A. 2014;111:5664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao X, Yi L, Lan LL, Wei HY, Wei D. Long-term PM2.5 exposure increases the risk of non-small cell lung cancer (NSCLC) progression by enhancing interleukin-17a (IL-17a)-regulated proliferation and metastasis. Aging (Albany NY). 2020;12:11579–602.

    Article  CAS  Google Scholar 

  • Charli D, Justin MD, Claudia P. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin Cancer Biol. 2017;47:177–84.

    Article  CAS  Google Scholar 

  • Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010;69:348–54.

    Article  PubMed  Google Scholar 

  • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2004;170:1164–71.

    Article  PubMed  Google Scholar 

  • Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, et al. IL-17 induces AKT-dependent IL-6/Jak2/Stat3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer. 2011;10:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerassimov A, Hoshino Y, Takubo Y, Turcotte A, Yamamoto M, Ghezzo H, et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med. 2004;170:974–80.

    Article  PubMed  Google Scholar 

  • Higashikawa K, Yoneda S, Tobiume K, Saitoh M, Taki M, Mitani Y, et al. Deltanp63alpha-dependent expression of ID-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. Int J Cancer. 2009;124:2837–44.

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet. 2011;43:792–6.

    Article  CAS  PubMed  Google Scholar 

  • Huang YT, Lin X, Liu Y, Chirieac LR, McGovern R, Wain J, et al. Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer. Proc Natl Acad Sci U S A. 2011;108:16345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki A, Foxman EF, Molony RD. Early local immune defences in the respiratory tract. Nat Rev Immunol. 2017;17:7–20.

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Liu CT, Zhang WD. IL-17a and GDF15 are able to induce epithelial-mesenchymal transition of lung epithelial cells in response to cigarette smoke. Exp Ther Med. 2018;16:12–20.

    PubMed  PubMed Central  Google Scholar 

  • Kemeny A, Cseko K, Szitter I, Varga ZV, Bencsik P, Kiss K, et al. Integrative characterization of chronic cigarette smoke-induced cardiopulmonary comorbidities in a mouse model. Environ Pollut. 2017;229:746–59.

    Article  CAS  PubMed  Google Scholar 

  • Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, et al. Deltanp63alpha is an oncogene that targets chromatin remodeler LSH to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell. 2011;8:164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J. 2017;50:1602434.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor-based signaling and implications for disease. Nat Immunol. 2019;20:1594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Chen T, Lin Q, Lin G, Lin J, Chen G, et al. Serum mir-19a expression correlates with worse prognosis of patients with non-small cell lung cancer. J Surg Oncol. 2013;107:767–71.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, et al. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, Hotair, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicol Appl Pharmacol. 2015;282:9–19.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, et al. Stat3-regulated exosomal mir-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 2016;370:125–35.

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Luo F, Liu Y, Liu X, Shi L, Lu X, et al. Posttranscriptional silencing of the LNCRNA malat1 by mir-217 inhibits the epithelial-mesenchymal transition via enhancer of Zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Appl Pharmacol. 2015;289:276–85.

    Article  CAS  PubMed  Google Scholar 

  • Mannam P, Rauniyar N, Lam TT, Luo R, Lee PJ, Srivastava A. Mkk3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med. 2016;101:102–15.

    Article  CAS  PubMed  Google Scholar 

  • McAleer JP, Kolls JK. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev. 2014;260:129–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50:892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meggy SC, Julien L, Didier C, Christine G. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017;11:805–23.

    Article  Google Scholar 

  • Mendell JT. Miriad roles for the mir-17-92 cluster in development and disease. Cell. 2008;133:217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migdalska-Sek M, Goralska K, Jablonski S, Kordiak J, Nawrot E, Kiszalkiewicz JM, et al. Evaluation of the relationship between the IL-17a gene expression level and regulatory mirna-9 in relation to tumor progression in patients with non-small cell lung cancer: a pilot study. Mol Biol Rep. 2020;47:583–92.

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Kubo M, Takahashi A, Yoon KA, Kim J, Lee GK, et al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. Nat Genet. 2010;42:893–6.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Slade N. P63 and p73: roles in development and tumor formation. Mol Cancer Res. 2004;2:371–86.

    Article  CAS  PubMed  Google Scholar 

  • Montalbano AM, Albano GD, Bonanno A, Riccobono L, Di Sano C, Ferraro M, et al. Autocrine acetylcholine, induced by IL-17a via NFKappab and ERK1/2 pathway activation, promotes MUC5AC and IL-8 synthesis in bronchial epithelial cells. Mediators Inflamm. 2016;2016:9063842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olive V, Jiang I, He L. Mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol. 2010;42:1348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden BT, et al. Role of IL-1alpha and the NLRP3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J. 2011;38:1019–28.

    Article  CAS  PubMed  Google Scholar 

  • Roos AB, Sanden C, Mori M, Bjermer L, Stampfli MR, Erjefalt JS. IL-17a is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis. Am J Respir Crit Care Med. 2015;191:1232–41.

    Article  CAS  PubMed  Google Scholar 

  • Saad MI, McLeod L, Yu L, Ebi H, Ruwanpura S, Sagi I, et al. The adam17 protease promotes tobacco smoke carcinogen-induced lung tumorigenesis. Carcinogenesis. 2020;41:527–38.

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  • Simet SM, Sisson JH, Pavlik JA, Devasure JM, Boyer C, Liu X, et al. Long-term cigarette smoke exposure in a mouse model of ciliated epithelial cell function. Am J Respir Cell Mol Biol. 2010;43:635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Cheng X, Li Y, Han Y, Song X, Yu D, et al. Mir-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med. 2018;7:2485–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MS, Wu XR, Lee HW, Xia Y, Deng FM, Moreira AL, et al. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc Natl Acad Sci U S A. 2019;116:21727–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran MN, Choi W, Wszolek MF, Navai N, Lee IL, Nitti G, et al. The p63 protein isoform deltanp63alpha inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of mir-205. J Biol Chem. 2013;288:3275–88.

    Article  CAS  PubMed  Google Scholar 

  • Tsai HC, Velichko S, Hung LY, Wu R. IL-17a and TH17 cells in lung inflammation: an update on the role of TH17 cell differentiation and IL-17r signaling in host defense against infection. Clin Dev Immunol. 2013;2013:267971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuvdendorj A, Feenstra T, Tseveen B, Buskens E. Smoking-attributable burden of lung cancer in Mongolia a data synthesis study on differences between men and women. Plos One. 2020;15(2):e229090.

    Article  CAS  Google Scholar 

  • Vakonaki E, Soulitzis N, Sifakis S, Papadogianni D, Koutroulakis D, Spandidos DA. Overexpression and ratio disruption of deltanp63 and Tap63 isoform equilibrium in endometrial adenocarcinoma: correlation with obesity, menopause, and grade I/II tumors. J Cancer Res Clin Oncol. 2012;138:1271–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang GZ, Cheng X, Li XC, Liu YQ, Wang XQ, Shi X, et al. Tobacco smoke induces production of chemokine Ccl20 to promote lung cancer. Cancer Lett. 2015;363:60–70.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yin R, Dai J, Gu Y, Cui S, Ma H, et al. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat Commun. 2018a;9:2054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Chen J, Jiang Y, Shi Y, Zhu J, Xie C, et al. Wnt/beta-catenin modulates chronic tobacco smoke exposure-induced acquisition of pulmonary cancer stem cell properties and diallyl trisulfide intervention. Toxicol Lett. 2018b;291:70–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Yang L, Zhang C, Wang R, Zhang Z, He Q, et al. Th17 cell-derived IL-17a promoted tumor progression via Stat3/Nf-kappab/notch1 signaling in non-small cell lung cancer. Oncoimmunology. 2018c;7:e1461303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, et al. Deltanp63alpha up-regulates the HSP70 gene in human cancer. Cancer Res. 2005;65:758–66.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Cao Y, He Z, He J, Hu C, Duan H, et al. Serum levels of mir-19b and mir-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med. 2014;232(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Zhu J, Jiang Y, Chen J, Wang X, Geng S, et al. Sulforaphane inhibits the acquisition of tobacco smoke-induced lung cancer stem cell-like properties via the IL-6/deltanp63alpha/notch axis. Theranostics. 2019;9:4827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH, et al. Microrna-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting Cul5. Cancer Lett. 2012;322:148–58.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Hao K, Yu L, Zhang X. Serum interleukin-17 as a diagnostic and prognostic marker for non-small cell lung cancer. Biomarkers. 2014;19:287–90.

    Article  CAS  PubMed  Google Scholar 

  • You R, DeMayo FJ, Liu J, Cho SN, Burt BM, Creighton CJ, et al. IL17A regulates tumor latency and metastasis in lung adeno and squamous sq.2b and ad.1 cancer. Cancer Immunol Res. 2018;6:645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xu Y, Li Y, Xu W, Luo F, Wang B, et al. Nf-kappab-mediated inflammation leading to EMT via mir-200c is involved in cell transformation induced by cigarette smoke extract. Toxicol Sci. 2013;135:265–76.

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang H, Han X, Ma J, Zhou Y, Chen Z, et al. Deltanp63alpha attenuates tumor aggressiveness by suppressing mir-205/zeb1-mediated epithelial-mesenchymal transition in cervical squamous cell carcinoma. Tumour Biol. 2016;37:10621–32.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Hua W, Jin Y, Zhang C, Che L, Xia L, et al. Tc17 cells are associated with cigarette smoke-induced lung inflammation and emphysema. Respirology. 2015;20:426–33.

    Article  PubMed  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by grants from the National Basic Research Program of China (973 Program) (No. 2013CB910303), the National Natural Science Foundation of China (Nos. 81803210, 81773431, 81973026), the Natural Science Foundation of Jiangsu Province (BK20180217), the China Postdoctoral Science Foundation Funded Project (2018M642280, 2020T130312), and Suzhou Talent Training Program (GSWS2020075).

Author information

Authors and Affiliations

Authors

Contributions

Chunfeng Xie and Jianyun Zhu were responsible for in vivo experiments. Xiaoting Li, Cong Huang, Xue Yang, Xiaoqian Wang, Yu Meng, Shanshan Geng, and Jieshu Wu performed most of the in vitro experiments. Hongbin Shen and Zhibin Hu participated in the study design. Zili Meng contributed to the tissue preparation and study design. Xiaoting Li performed study design and data analysis and wrote the manuscript draft. Caiyun Zhong conceived, designed, and supervised the study and wrote the manuscript. All authors were involved in the revision of the manuscript and approved the submitted version.

Corresponding authors

Correspondence to Zili Meng, Xiaoting Li or Caiyun Zhong.

Ethics declarations

Ethics approval

All procedures involving human tumors were approved by the Ethics Committee of Nanjing Medical University with ethical clearance application number (2016-318). Mice were handled under the recommendations in the guidelines of the Animal Care and Welfare Committee of Nanjing Medical University (IACUC-14030181).

Consent to participate

Written informed consents were collected from all the participants before enrollment.

Consent for publication

All contributing authors agree to the publication of this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Tobacco smoke–induced upregulation of IL-17A promoted lung cancer EMT.

2. IL-17A increased ΔNp63α expression in tobacco smoke–transformed HBE cells.

3. ΔNp63α exerted tobacco smoke–triggered lung cancer EMT by transcriptional activation of miR-19.

4. IL-17A/ΔNp63α/miR-19 axis was involved in tobacco smoke–induced lung cell EMT process in vivo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Zhu, J., Huang, C. et al. Interleukin-17A mediates tobacco smoke–induced lung cancer epithelial-mesenchymal transition through transcriptional regulation of ΔNp63α on miR-19. Cell Biol Toxicol 38, 273–289 (2022). https://doi.org/10.1007/s10565-021-09594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09594-0

Keywords

Navigation