Skip to main content

Advertisement

Log in

Multi-system neurological disorder associated with a CRYAB variant

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

We report a multiplex family with extended multisystem neurological phenotype associated with a CRYAB variant. Two affected siblings were evaluated with whole exome sequencing, muscle biopsy, laser microdissection, and mass spectrometry-based proteomic analysis. Both patients and their mother manifested a combination of early-onset cataracts, cardiomyopathy, cerebellar ataxia, optic atrophy, cognitive impairment, and myopathy. Whole exome sequencing identified a heterozygous c.458C>T variant mapped to the C-terminal extension domain of the Alpha-crystallin B chain, disrupting its function as a molecular chaperone and its ability to suppress protein aggregation. In accordance with the molecular findings, muscle biopsies revealed subsarcolemmal deposits that appeared dark with H&E and trichrome staining were negative for the other routine histochemical staining and for amyloid with the Congo-red stain. Electron microscopy demonstrated that the deposits were composed of numerous parallel fibrils. Laser microdissection and mass spectrometry-based proteomic analysis revealed that the inclusions are almost exclusively composed of crystallized chaperones/heat shock proteins. Moreover,  a structural model suggests that Ser153 could be involved in monomer stabilization, dimer association, and possible binding of partner proteins. We propose that our report potentially expands the complex phenotypic spectrum of alpha B-crystallinopathies with possible effect of a CRYAB variant on the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Augusteyn RC (2004) α-crystallin: a review of its structure and function. Clin Exp Optom 87:356–366

    Article  Google Scholar 

  2. van der Smagt JJ, Vink A, Kirkels JH, Nelen M, ter Heide H, Molenschot MM et al (2014) Congenital posterior pole cataract and adult onset dilating cardiomyopathy: expanding the phenotype of αB-crystallinopathies. Clin Genet 85:381–385

    Article  Google Scholar 

  3. Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of alpha B-crytallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108(16):6409–6414

    Article  CAS  Google Scholar 

  4. Braun N, Zacharias M, Peschek J, Kastenmüller A, Zou J, Hanzlik M et al (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A 108:20491–20496

    Article  CAS  Google Scholar 

  5. Vicart P, Caron A, Guicheney P, Li Z, Prévost MC, Faure A, Chateau D, Chapon F, Tomé F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  CAS  Google Scholar 

  6. Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative αB-crystallin mutations. Ann Neurol 54:804–810

    Article  CAS  Google Scholar 

  7. Reilich P, Schoser B, Schramm N, Krause S, Schessl J, Kress W, Müller-Höcker J, Walter MC, Lochmuller H (2010) The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscul Disord 20:255–259

    Article  Google Scholar 

  8. Del Bigio MR, Chudley AE, Sarnat HB, Campbell C, Goobie S, Chodirker BN et al (2011) Infantile muscular dystrophy in Canadian Aboriginals is an αB-crystallinopathy. Ann Neurol 69:866–871

    Article  Google Scholar 

  9. Sacconi S, Féasson L, Antoine JC, Pécheux C, Bernard R, Cobo AM, Casarin A, Salviati L, Desnuelle C, Urtizberea A (2012) A novel CRYAB mutation resulting in multisystemic disease. Neuromuscul Disord 22:66–72

    Article  Google Scholar 

  10. Marcos AT, Amorós D, Muñoz-Cabello B, Galán F, Infante ER, Alcaraz-Mas L, Navarro-Pando JM (2020) A novel dominant mutation in CRYAB gene leading to a severe phenotype with childhood onset. Mol Genet Genomic Med 8(8):e1290

    Article  CAS  Google Scholar 

  11. Harel T, Hacohen N, Shaag A, Gomori M, Singer A, Elpeleg O, Meiner V (2017) Homozygous null variant in CRADD, encoding an adaptor protein that mediates apoptosis, is associated with lissencephaly. Am J Med Genet A 173:2539–2544

    Article  CAS  Google Scholar 

  12. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl 25:1754–1760

    Article  CAS  Google Scholar 

  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) 1000 genome project data processing subgroup. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  14. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  Google Scholar 

  15. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi BB, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443

    Article  CAS  Google Scholar 

  16. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65

    Article  CAS  Google Scholar 

  17. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747

    Article  CAS  Google Scholar 

  18. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces. Sci STKE 219:12

    Google Scholar 

  19. Raju I, Abraham EC (2013) Mutants of human αB-crystallin cause enhanced protein aggregation and apoptosis in mammalian cells: influence of co-expression of HspB1. Biochem Biophys Res Commun 430:107–112

    Article  CAS  Google Scholar 

  20. Pilotto A, Marziliano N, Pasotti M, Grasso M, Costante AM (2006) Arbustini E alphaB-crystallin mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200 unrelated probands. Biochem Biophys Res Commun 346:1115–1117

    Article  CAS  Google Scholar 

  21. Semmler AL, Sacconi S, Bach JE, Liebe C, Bürmann J, Kley RA, Ferbert A, Anderheiden R, van den Bergh P, Martin JJ, de Jonghe P, Neuen-Jacob E, Müller O, Deschauer M, Bergmann M, Schröder JM, Vorgerd M, Schulz JB, Weis J, Kress W, Claeys KG (2014) Unusual multisystemic involvement and novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies. Orphanet J Rare Dis 9:121

    Article  Google Scholar 

  22. Kirbach BB, Golenhofen N (2011) Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res 89:162–175

    Article  CAS  Google Scholar 

  23. Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of aB-crystallin in Alzheimer’s disease. Acta Neuropathol 87:155–160

    Article  CAS  Google Scholar 

  24. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10:2273–2276

    Article  CAS  Google Scholar 

  25. Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y (1992) Accumulation of alpha B-crystallin in brains of patients with Alexander’s disease is not due to an abnormality of the 5’-flanking and coding sequence of the genomic DNA. Neurosci Lett 140:89–92

    Article  CAS  Google Scholar 

  26. Iwaki T, Wisniewski T, Iwaki A, Iwaki A, Corbin E, Tomokane N et al (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Selcen D (2011) Myofibrillar myopathies. Neuromuscul Disord 21:161–171

    Article  Google Scholar 

  28. Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson CG, Oldfors A (2003) Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol 54:494–500

    Article  CAS  Google Scholar 

  29. Bohlega S, Lach B, Meyer BF, Al Said Y, Kambouris M, Al Homsi M et al (2003) Autosomal dominant hyaline body myopathy: clinical variability and pathologic findings. Neurology 61:1519–1523

    Article  CAS  Google Scholar 

  30. Barohn RJ, Brumback RA, Mendell JR (1994) Hyaline body myopathy. Neuromuscul Disord 4:257–262

    Article  CAS  Google Scholar 

  31. Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo-and hetero-oligomeric complexes: an update. FEBS Lett 587:1959–1969

    Article  CAS  Google Scholar 

  32. Dimauro I, Antonioni A, Mercatelli N, Caporossi D (2018) The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 23:491–505

    Article  Google Scholar 

  33. Clark JI (1860) Functional sequences in human alphaB crystallin. Biochim Biophys Acta 2016:240–245

    Google Scholar 

  34. Inagakia N, Hayashia T, Arimura T, Koga Y, Takahashi M, Shibata H et al (2006) Alpha B-crystallin mutation in dilated cardiomyopathy. Biophys Res Commun 342:379–386

    Article  Google Scholar 

Download references

Funding

Work in CGB’s lab is provided by intramural funds of NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Sadeh.

Ethics declarations

Ethics approval

All procedures performed in studies were in accordance with the ethical standards of the institutional committees and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeh, M., Rahat, D., Meiner, V. et al. Multi-system neurological disorder associated with a CRYAB variant. Neurogenetics 22, 117–125 (2021). https://doi.org/10.1007/s10048-021-00640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-021-00640-x

Keywords

Navigation