Skip to main content
Log in

Computational intelligence techniques for modeling of dynamic adsorption of organic pollutants on activated carbon

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The objective of this work is to compare the efficiency of three computational intelligence techniques: Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) to model the dynamic adsorption of organic pollutants on activated carbon. A comparison study was enhanced using five models: ANN with conventional transfer functions, ANN with new transfer function called “SPOCU”, SVM, SVM hybrid with Dragonfly optimisation algorithm (SVM-DA) and ANFIS. A set of data points, collected from scientific papers containing the dynamic adsorption kinetics of adsorption on activated carbon, was used in the modelling process. The studied parameters were molar mass, initial concentration, flow rate, bed height, BET surface area, time and concentration of non-dimensional effluents. Overall, the developed model was able to accurately estimate 11,763 experimental data points gathered from the literature. The performance of the optimised models has been evaluated using different metrics between the experimental and the predicted data. Results show that SVM-DA model can estimate accurately the dynamic adsorption of organic pollutants on activated carbon against the other tested models. Also a graphical user interface is developed in this paper in order to keep the traceability of the estimated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AAD:

Average absolute deviation

ANNs:

Artificial Neural Networks

Af :

Precision factor

Bf :

Biais factor

ANFISs:

Adaptive Neuro-Fuzzy Inference Systems

MSE:

Mean square error

MSRE:

Mean Square Relative Error

RMSE:

Root mean square error

RAE:

Relative Absolute Error

RRSE:

Root Relative Square Error

R:

Correlation coefficient

SVMs:

Support Vector Machines

M:

Molar mass

C0 :

Initial concentration

Q:

Flow rate

H:

Bed height

As:

Specific surface area

T:

Time

C/C0 :

Non-dimensional effluent concentration

LM:

Levenberg–Marquardt

BP:

Back-propagation

RBF:

Radial basis function

MFs:

Membership functions

ε :

Slump coefficient

C :

Cost factor

σ :

Kernel parameter

References

  1. Kulkarni VR, Mujawar S, Apte S (2010) Hash function implementation using artificial neural network. Soft Comput 1:1–8. https://doi.org/10.5121/ijcsa.2014.4310

    Article  Google Scholar 

  2. San Sebastián Martínez N, Fernández JF, Segura XF, Ferrer AS (2003) Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J Hazard Mater 101:315–322. https://doi.org/10.1016/S0304-3894(03)00207-3

    Article  Google Scholar 

  3. Zhou GJ, Ying GG, Liu S et al (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16:2018–2027. https://doi.org/10.1039/c4em00094c

    Article  Google Scholar 

  4. Carmen Z, Daniela S (2012) Textile organic dyes – characteristics, polluting Effects and separation / elimination procedures from Industrial effluents –a critical overview. IntechOpen, Rijeka

    Book  Google Scholar 

  5. Choi YY, Baek SR, Kim JI et al (2017) Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plants collecting domestic wastewater and industrial discharge. Water 9(6):409

    Article  Google Scholar 

  6. Abbas AA, Jingsong G, Ping LZ et al (2009) Review on landfill leachate treatments. Am J Appl Sci 6:672–684. https://doi.org/10.3844/ajas.2009.672.684

    Article  Google Scholar 

  7. Xu Z, Cai J, Pan B (2013) Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ Sci A 14:155–176. https://doi.org/10.1631/jzus.A1300029

    Article  Google Scholar 

  8. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9:45. https://doi.org/10.1007/s13201-019-0927-7

    Article  Google Scholar 

  9. Kaczmarski K, Mazzotti M, Storti G, Morbidelli M (1997) Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements. Comput Chem Eng 21:641–660. https://doi.org/10.1016/S0098-1354(96)00300-6

    Article  Google Scholar 

  10. Aquino G, Zacarias A, Rubio JDJ et al (2020) Novel nonlinear Hypothesis for the delta parallel robot modeling. IEEE Access 8:46324–46334. https://doi.org/10.1109/ACCESS.2020.2979141

    Article  Google Scholar 

  11. Rubio JDJ (2009) SOFMLS: Online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17:1296–1309. https://doi.org/10.1109/TFUZZ.2009.2029569

    Article  Google Scholar 

  12. Chiang H-S, Chen M-Y, Huang Y-J (2019) Wavelet-Based EEG Processing for Epilepsy Detection Using Fuzzy Entropy and Associative Petri Net. IEEE Access 7:103255–103262. https://doi.org/10.1109/access.2019.2929266

    Article  Google Scholar 

  13. Elias I, de Jesús RJ, Cruz DR et al (2020) Hessian with mini-batches for electrical demand prediction. Appl Sci. https://doi.org/10.3390/app10062036

    Article  Google Scholar 

  14. Meda-Campaña JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973. https://doi.org/10.1109/ACCESS.2018.2846483

    Article  Google Scholar 

  15. Ashfahani A, Pratama M, Lughofer E, Ong YS (2020) DEVDAN: Deep evolving denoising autoencoder. Neurocomputing 390:297–314. https://doi.org/10.1016/j.neucom.2019.07.106

    Article  Google Scholar 

  16. Yan H, Zhang J, Rahman SS, et al (2020) Predicting permeability changes with injecting CO2 in coal seams during CO2 geological sequestration: A comparative study among six SVM-based hybrid models. Sci Total Environ 705:135941

  17. Liao HT, Shiau CY (2000) Analytical solution to an axial dispersion model for the fixed-bed adsorber. AIChE J 46:1168–1176. https://doi.org/10.1002/aic.690460609

    Article  Google Scholar 

  18. He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. https://doi.org/10.1016/j.jhydrol.2013.11.054

    Article  Google Scholar 

  19. Stošović MA, Litovski V (2017) Applications of artificial neural networks in electronics. Electronics 22:87–94. https://doi.org/10.7251/ELS1721087A

    Article  Google Scholar 

  20. Bravo-Sánchez UI, Rico-Martinez R, Iglesias-Silva GA (2002) Improvement of the empiricism in the BACK equation of state via hybrid neural networks. Ind Eng Chem Res 41:3705–3713. https://doi.org/10.1021/ie010773b

    Article  Google Scholar 

  21. Chowdhury S, Das SP (2013) Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system. Environ Sci Pollut Res 20:1050–1058. https://doi.org/10.1007/s11356-012-0912-2

    Article  Google Scholar 

  22. Moreno-Pérez J, Bonilla-Petriciolet A, Mendoza-Castillo DI et al (2018) Artificial neural network-based surrogate modeling of multi-component dynamic adsorption of heavy metals with a biochar. J Environ Chem Eng 6:5389–5400. https://doi.org/10.1016/j.jece.2018.08.038

    Article  Google Scholar 

  23. Cuevas E, Díaz P, Avalos O et al (2018) Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm. Appl Intell 48:182–203. https://doi.org/10.1007/s10489-017-0969-1

    Article  Google Scholar 

  24. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  25. Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716. https://doi.org/10.1016/j.jhydrol.2006.01.021

    Article  Google Scholar 

  26. Mendoza-Castillo DI, Villalobos-Ortega N, Bonilla-Petriciolet A, Tapia-Picazo JC (2015) Neural network modeling of heavy metal sorption on lignocellulosic biomasses: Effect of metallic ion properties and sorbent characteristics. Ind Eng Chem Res 54:443–453. https://doi.org/10.1021/ie503619j

    Article  Google Scholar 

  27. Ghaedi M, Ghaedi AM, Abdi F et al (2013) Principal component analysis- adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk. Ecotoxicol Environ Saf 96:110–117. https://doi.org/10.1016/j.ecoenv.2013.05.015

    Article  Google Scholar 

  28. Rebouh S, Bouhedda M, Hanini S (2016) Neuro-fuzzy modeling of Cu(II) and Cr(VI) adsorption from aqueous solution by wheat straw. Desalin Water Treat 57:6515–6530. https://doi.org/10.1080/19443994.2015.1009171

    Article  Google Scholar 

  29. Qasaimeh A, Abdallah M, Bani Hani F (2012) Adaptive neuro-fuzzy logic system for heavy metal sorption in aquatic environments. J Water Resour Prot 04:277–284. https://doi.org/10.4236/jwarp.2012.45030

    Article  Google Scholar 

  30. Raghavendra S, Deka PC (2014) Support vector machine applications in the field of hydrology: A review. Appl Soft Comput J 19:372–386. https://doi.org/10.1016/j.asoc.2014.02.002

    Article  Google Scholar 

  31. Aryafar A, Gholami R, Rooki R, Doulati Ardejani F (2012) Heavy metal pollution assessment using support vector machine in the Shur River, Sarcheshmeh copper mine. Iran Environ Earth Sci 67:1191–1199. https://doi.org/10.1007/s12665-012-1565-7

    Article  Google Scholar 

  32. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727. https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  33. Abiodun OI, Jantan A, Omolara AE et al (2018) State-of-the-art in artificial neural network applications: A survey. Heliyon 4:e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  34. Aghav RM, Kumar S, Mukherjee SN (2011) Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents. J Hazard Mater 188:67–77. https://doi.org/10.1016/j.jhazmat.2011.01.067

    Article  Google Scholar 

  35. Si-Moussa C, Hanini S, Derriche R et al (2008) Prediciton of high-pressure vapor liquid equilibrium of six Binary systems, carbon dioxide with six esters, using an artificial neural network model. Brazilian J Chem Eng 25:183–199. https://doi.org/10.1590/S0104-66322008000100019

    Article  Google Scholar 

  36. Esmaeelzadeh SR, Adib A, Alahdin S (2014) Long-term streamflow forecasts by Adaptive Neuro-Fuzzy Inference System using satellite images and K-fold cross-validation (Case study: Dez, Iran). KSCE J Civ Eng 19:2298–2306. https://doi.org/10.1007/s12205-014-0105-2

    Article  Google Scholar 

  37. Jang JR (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System. 23

  38. Quej VH, Almorox J, Arnaldo JA, Saito L (2017) ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. J Atmos Solar-Terrestrial Phys 155:62–70. https://doi.org/10.1016/j.jastp.2017.02.002

    Article  Google Scholar 

  39. Vapnik V (2013) The nature of statistical learning theory. Springer science & business media

  40. Platt J (1998) Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. 1–21

  41. Bafitlhile TM, Li Z (2019) Applicability of ε-Support Vector Machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China. Water (Switzerland). https://doi.org/10.3390/w11010085

    Article  Google Scholar 

  42. Mukaka MM (2012) Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research 24:69–71

    Google Scholar 

  43. McNally D, Wilkinson J (2010) The MMIFstat Statistical Analysis Package Draft 6:7

    Google Scholar 

  44. Khair U, Fahmi H, Al HS, Rahim R (2017) Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/930/1/012002

    Article  Google Scholar 

  45. Kiseľák J, Lu Y, Švihra J et al (2020) “SPOCU”: scaled polynomial constant unit activation function. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05182-1

    Article  Google Scholar 

  46. Laidi M, Hanini S (2013) Optimal solar COP prediction of a solar-assisted adsorption refrigeration system working with activated carbon/methanol as working pairs using direct and inverse artificial neural network. Int J Refrig 36:247–257. https://doi.org/10.1016/j.ijrefrig.2012.09.016

    Article  Google Scholar 

  47. Yousefi A, Asadi V, Nassiri SM, et al (2013) Comparison of mathematical and neural network models in the estimation of Papaya fruit moisture content. Philipp Agric Sci. 95

  48. Ibrir A, Kerchich Y, Hadidi N, et al (2020) Prediction of the concentrations of PM1, PM2. 5, PM4 and PM10 by using the hybrid dragonfly-SVM algorithm. Air Qual Atmos Heal 1–11. https://doi.org/https://doi.org/10.1007/s11869-020-00936-1

  49. Benimam H, Moussa CS, Hentabli M et al (2020) Dragonfly-Support vector machine for regression modeling of the activity coefficient at infinite dilution of solutes in imidazolium ionic liquids using σ-profile descriptors. J Chem Eng Data 65:3161–3172. https://doi.org/10.1021/acs.jced.0c00168

    Article  Google Scholar 

  50. Mohammadi AH, Gharagheizi F, Eslamimanesh A, Richon D (2012) Evaluation of experimental data for wax and diamondoids solubility in gaseous systems. Chem Eng Sci 81:1–7

    Article  Google Scholar 

  51. Otowa T, Nojima Y, Miyazaki T (1997) Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon N Y 35:1315–1319. https://doi.org/10.1016/S0008-6223(97)00076-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Abdallah El Hadj.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 773 kb)

Supplementary file2 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesellem, Y., Hadj, A.A.E., Laidi, M. et al. Computational intelligence techniques for modeling of dynamic adsorption of organic pollutants on activated carbon. Neural Comput & Applic 33, 12493–12512 (2021). https://doi.org/10.1007/s00521-021-05890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05890-2

Keywords

Navigation