Skip to main content

Advertisement

Log in

Predicting an ideal 2D carbon nanostructure with negative Poisson's ratio from first principles: implications for nanomechanical devices

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The intrinsic negative Poisson’s ratio effect at the level of molecule in two-dimensional nanomaterials, especially in the perfect planar nanostructures with a single atom thickness, is really rare and has attracted a lot of research interests because of its unique mechanical properties in the nanoscale and extensive applications in mechanical nanodevices. In this work, a novel ideal planar carbon nanostructure (PCNS) framework with a single atom thickness composed by carbon and hydrogen atoms is proposed and studied by means of first-principles density functional calculation. The results showed that the PCNS is, simultaneously, of excellent thermodynamic, molecular dynamic and mechanical stabilities. In addition, the electronic structure, mechanical characters, and optical-electronic characteristics of PCNS are also explored. Excitedly, it is found that the PCNS has a significant negative Poisson's ratio effect in plane, and the maximum value of Poisson's ratio is as high as − 2.094. Meanwhile, the material has a wide range of elastic mechanics. Moreover, the PCNS presents an ideal UV absorption performance. It is hoped that this work could be a useful structural design strategy for the development of the ideal 2D carbon-based nanomechanical devices with the intrinsic negative Poisson’s ratio effect and other electronic functions.

Graphic abstract

An ideal 2D carbon nanostructure with negative Poisson's ratio was designed and its properties were investigated from first principles calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang JW, Park HS (2014) Negative Poisson’s ratio in single-layer black phosphorus. Nat Commun 5:4727–4733

    Article  CAS  Google Scholar 

  2. Kou LZ, Chen CF, Smith SC (2015) Phosphorene: fabrication, properties, and applications. J Phys Chem Lett 6:2794–2805

    Article  CAS  Google Scholar 

  3. Yu LP, Yan QM, Ruzsinszky A (2016) Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides. Nat Commun 8:15224–15231

    Article  CAS  Google Scholar 

  4. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 11:823–829

    Article  CAS  Google Scholar 

  5. Dagdelen J, Montoya J, Jong M, Persson K (2017) Computational prediction of new auxetic materials. Nat Commun 8:323–330

    Article  CAS  Google Scholar 

  6. Zhang CM, He TW, Matta SK, Liao T, Kou LZ, Chen ZF, Du AJ (2019) Predicting novel 2D MB2 (M = Ti, Hf, V, Nb, Ta) monolayers with ultrafast dirac transport channel and electron-orbital controlled negative Poisson’s ratio. J Phys Chem Lett 10:2567–2573

    Article  CAS  Google Scholar 

  7. Qin R, Zheng JX, Zhu WJ (2017) Sign-tunable Poisson’s ratio in semi-fluorinated graphene. Nanoscale 9:128–133

    Article  CAS  Google Scholar 

  8. Gao ZB, Dong X, Li NB, Ren J (2017) Novel two-dimensional silicon dioxide with in-plane negative Poisson’s ratio. Nano Lett 17:772–777

    Article  CAS  Google Scholar 

  9. Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking. Adv Mater 12:617–628

    Article  CAS  Google Scholar 

  10. Wang Y, Li F, Li YF, Chen ZF (2016) Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio. Nat Commun 7:11488–11494

    Article  CAS  Google Scholar 

  11. Wang HD, Li XX, Sun JY, Liu Z, Yang JL (2017) BP5 monolayer with multiferroicity and negative Poisson’s ratio: a prediction by global optimization method. 2D Mater 4:045020

    Article  CAS  Google Scholar 

  12. Zhang LC, Qin GZ, Fang WZ, Cui HJ, Zheng QR, Yan QB, Su G (2016) Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci Rep 6:19830–19838

    Article  CAS  Google Scholar 

  13. Zhang SH, Zhou J, Wang Q, Chen XS, Kawazoe Y, Jena P (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci USA 112:2372–2377

    Article  CAS  Google Scholar 

  14. Wang HF, Li QF, Gao Y, Miao F, Zhou XF, Wan XG (2016) Strain effects on borophene: ideal strength, negative Poisson’s ratio and phonon instability. New J Phys 18:073016

    Article  CAS  Google Scholar 

  15. Zhou LJ, Zhuo ZW, Kou LZ, Du AJ, Tretiak S (2017) Computational dissection of two-dimensional rectangular titanium mononitride TiN: auxetics and promises for photocatalysis. Nano Lett 17:4466–4472

    Article  CAS  Google Scholar 

  16. Zhang CM, Nie YH, Du AJ (2019) Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 materials. Acta Phys-Chim Sin 35:1128–1133

    Article  CAS  Google Scholar 

  17. Gao ZB, Zhang ZF, Liu G, Wang JS (2019) Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene. Phys Chem Chem Phys 21:26033–26040

    Article  CAS  Google Scholar 

  18. Kou LZ, Ma YD, Tang C, Sun ZQ, Du AJ, Chen CF (2016) Auxetic and ferroelastic borophane: a novel 2D material with negative Poisson’s ratio and switchable dirac transport Channels. Nano Lett 16:7910–7914

    Article  CAS  Google Scholar 

  19. Yuan K, Li MY, Liu YZ, Li RZ (2019) Design and prediction of novel two-dimensional carbon nano-structure with in-plane negative Poission’s ratio. J Nanomater 2019:8618159

    Google Scholar 

  20. Li M, Yuan K, Zhao Y, Gao Z, Zhao X (2020) Novel hyperbolic two-dimensional carbon material with in-plane negative Poisson’s ratio behavior and low-gap semiconductor character. ACS Omega 5:15783–15790

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  23. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter Mater Phys 49:14251–14269

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  25. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Computer programs. J Appl Cryst 41:653–658

    Article  CAS  Google Scholar 

  26. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scripta Mater 108:1–5

    Article  CAS  Google Scholar 

  27. Deringer VL, Stoffel RP, Togo A, Eck B, Meven M, Dronskowski R (2014) Ab initio ORTEP drawings: a case study of N-based molecular crystals with different chemical nature. CrystEngComm 16:10907–10915

    Article  CAS  Google Scholar 

  28. Tian X, Xuan X, Yu M, Mu Y, Lu HG, Zhang Z, Li SD (2019) Predicting two-dimensional semiconducting boron carbides. Nanoscale 11:11099–11106

    Article  CAS  Google Scholar 

  29. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) Cohesion energetics of carbon allotropes: quantum monte carlo study. J Chem Phys 140:114702

    Article  CAS  Google Scholar 

  30. Palke WE (1980) The electronic chemical potential and the H atom in the H2 molecule. J Chem Phys 72:2511–2514

    Article  CAS  Google Scholar 

  31. Shang XC, Lakes RS (2007) Stability of elastic material with negative stiffness and negative Poisson’s ratio. Phys Status Solidi B 244:1008–1026

    Article  CAS  Google Scholar 

  32. Zhang H, Pan H, Zhang M, Luo Y (2016) First-principles prediction of a new planar hydrocarbon material: half-hydrogenated 14,14,14-graphyne. Phys Chem Chem Phys 18:23954–23960

    Article  CAS  Google Scholar 

  33. Huang L, Callan JP, Glezer EN, Mazur H (1998) GaAs under intense ultrafast excitation: response of the dielectric function. Phys Rev Lett 80:185–188

    Article  CAS  Google Scholar 

  34. Yakuphanoglu F (2009) Electrical conductivity, seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating. J Alloy Compd 470:55–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21663024) and Natural Science Foundation of Gansu Science and Technology Program (20JR10RA792); K. Yuan acknowledges the financial support from the “Feitian” Scholar Program of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Yuan or Mengyang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Zhao, Y., Li, M. et al. Predicting an ideal 2D carbon nanostructure with negative Poisson's ratio from first principles: implications for nanomechanical devices. Carbon Lett. 31, 1227–1235 (2021). https://doi.org/10.1007/s42823-021-00246-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00246-1

Keywords

Navigation