Skip to main content
Log in

Boundary layer problems for the two-dimensional inhomogeneous incompressible magnetohydrodynamics equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the well-posedness of boundary layer problems for the inhomogeneous incompressible magnetohydrodynamics (MHD) equations, which are derived from the two-dimensional density-dependent incompressible MHD equations. Under the assumption that initial tangential magnetic field is not zero and density is a small perturbation of the outer constant flow in supernorm, the local-in-time existence and uniqueness of inhomogeneous incompressible MHD boundary layer equations are established in weighted conormal Sobolev space by energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidi, H., Gui, G.L., Zhang, P.: On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations. Commun. Pure Appl. Math. 64(6), 832–881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abidi, H., Paicu, M.: Global existence for the magnetohydrodynamic system in critical spaces. Proc. R. Soc. Edinb. Sect. A 138(3), 447–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexander, R., Wang, Y.G., Xu, C.J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942)

    Article  Google Scholar 

  5. Beirão da Veiga, H.: Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5(4), 907–918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, H., Crispo, F.: Concerning the \(W^{k, p}\)-inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech. 13(1), 117–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, D.X., Wang, Y.X., Zhang, Z.F.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(4), 1119–1142 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for nonhomogeneous incompressible fluids. Commun. Part. Differ. Equ. 28(5–6), 1183–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, P.: Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Commun. Math. Phys. 104(2), 311–326 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, P., Foias, C.: Navier–Stokes Equation. University of Chicago Press, Chicago (1988)

    Book  MATH  Google Scholar 

  11. Desjardins, B., Le Bris, C.: Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equ. 11(3), 377–394 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Gérard-Varet, D., Prestipino, M.: Formal derivation and stability analysis of boundary layer models in MHD. Z. Angew. Math. Phys. 68(3), 76 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerbeau, J.F., Le Bris, C.: Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differ. Equ. 2(3), 427–452 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Gie, G.M., Jung, C.Y., Temam, R.: Recent progresses in boundary layer theory. Discrete Contin. Dyn. Syst. 36(5), 2521–2583 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Grenier, E., Guo, Y., Nguyen, T.: Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gui, G.L.: Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity. J. Funct. Anal. 267(5), 1488–1539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. Ann. PDE 3(1), 10 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, Y., Iyer, S.: Validity of steady Prandtl layer expansions, arXiv:1805.05891

  21. Huang, Y.T., Liu, C.J., Yang, T.: Local-in-time well-posedness for compressible MHD boundary layer. J. Differ. Equ. 266(6), 2978–3013 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220(2), 809–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato, T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  24. Kazhikov, A.V.: Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid. Dokl. Akad. Nauk SSSR 216, 1008–1010 (1974). ((in Russian))

    MathSciNet  Google Scholar 

  25. Li, W.X., Wu, D., Xu, C.J.: Gevrey class smoothing effect for the Prandtl equation. SIAM J. Math. Anal 48(3), 1672–1726 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, W.X., Yang, T.: Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points. J. Eur. Math. Soc. 22(3), 717–775 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, X.Y., Zhang, T.: Almost global existence for 2D magnetohydrodynamics boundary layer system. Math. Methods Appl. Sci. 41(17), 7530–7553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, C.J., Wang, D.H., Xie, F., Yang, T.: Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. J. Funct. Anal. 279(7), 45 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, C.J., Xie, F., Yang, T.: A note on the ill-posedness of shear flow for the MHD boundary layer equations. Sci. China Math. 61(11), 2065–2078 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, C.J., Yang, T.: Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay. J. Math. Pures Appl. (9) 108(2), 150–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C.J., Xie, F., Yang, T.: MHD boundary layers theory in Sobolev spaces without monotonicity. I. Well-posedness theory. Commun. Pure Appl. Math. 72(1), 63–121 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, C.J., Xie, F., Yang, T.: Justification of Prandtl Ansatz for MHD boundary layer. SIAM J. Math. Anal. 51(3), 2748–2791 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models Oxford Lecture Series in Mathematics and Applications, vol 3. Oxford University Press, New York (1996)

    Google Scholar 

  34. Masmoudi, N.: Remarks about the inviscid limit of the Navier–Stokes system. Commun. Math. Phys. 270(3), 777–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Masmoudi, N., Rousset, F.: Uniform Regularity for the Navier–Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oleinik, O.A.: On the system of Prandtl equations in boundary-layer theory. Dokl. Akad. Nauk SSSR 150, 28–31 (1963)

    MathSciNet  Google Scholar 

  38. Oleinik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid, Prikl. Mat. Meh. 30, 801–821(Russian); translated as J. Appl. Math. Mech. 30, 951–974 (1966)

  39. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layers Theory, Applied Mathematics and Mathematical Computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  40. Prandtl, L.: Uber flüssigkeits-bewegung bei sehr kleiner reibung. Verhandlungen des III. Internationlen Mathematiker Kongresses, Heidelberg. Teubner, Leipzig, pp. 484–491 (1904)

  41. Iyer, S.: Steady Prandtl boundary layer expansions over a rotating disk. Arch. Ration. Mech. Anal. 224(2), 421–469 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Iyer, S.: Steady Prandtl layers over a moving boundary: nonshear Euler flows. SIAM J. Math. Anal. 51(3), 1657–1695 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schlichting, H., Gersten, K.: Unsteady Boundary Layers. In: Boundary-Layer Theory. Springer, Berlin, Heidelberg (2017)

  46. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, Y., Xin, Z.P., Yong, Y.: Uniform regularity and vanishing viscosity limit for the compressible Navier–Stokes with general Navier-Slip boundary conditions in three-dimensional domains. SIAM J. Math. Anal. 47(6), 4123–4191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiao, Y.L., Xin, Z.P.: On 3D Lagrangian Navier–Stokes \(\alpha \) model with a class of vorticityslip boundary conditions. J. Math. Fluid Mech. 15(2), 215–247 (2013)

    MathSciNet  Google Scholar 

  49. Xie, F., Yang, T.: Global-in-time stability of 2D MHD boundary layer in the Prandtl-Hartmann regime. SIAM J. Math. Anal. 50(6), 5749–5760 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xie, F., Yang, T.: Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow. Acta Math. Appl. Sin. Engl. Ser. 35(1), 209–229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, C.J., Zhang, X.: Long time well-posedness of Prandtl equations in Sobolev space. J. Differ. Equ. 263(12), 8749–8803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, P., Zhang, Z.F.: Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal. 270(7), 2591–2615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jincheng Gao’s research was partially supported by NNSF of China (11801586) and Natural Science Foundation of Guangdong Province of China (2020B1515310004). Daiwen Huang’s research was partially supported by NNSF of China (11971067, 11631008, 11771183). Zheng-an Yao’s research was partially supported by NNSF of China (11971496, 12026244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Gao.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculus inequalities

In this appendix, we will introduce some basic inequalities that be used frequently in this paper. First of all, we introduce the following Hardy type inequality, which can refer to [36].

Lemma A.1

Let the proper function \(f:{\mathbb {T}}\times {\mathbb {R}}^+ \rightarrow {\mathbb {R}}\), and satisfies \(f(x, y)|_{y=0}=0\) and \( \underset{{y \rightarrow +\infty }}{\lim } f(x,y) = 0\). If \(\lambda > - \frac{1}{2}\), then it holds true

$$\begin{aligned} \Vert f\Vert _{L^2_\lambda ({\mathbb {T}}\times {\mathbb {R}}^+)} \le \frac{2}{2\lambda +1} \Vert \partial _y f\Vert _{L^2_{\lambda +1} ({\mathbb {T}}\times {\mathbb {R}}^+)}. \end{aligned}$$
(A.1)

Next, we will state the following Sobolev-type inequality.

Lemma A.2

Let the proper function \(f:{\mathbb {T}}\times {\mathbb {R}}^+ \rightarrow {\mathbb {R}}\), and satisfies \( \underset{{y \rightarrow +\infty }}{\lim } f(x,y) = 0\). Then there exists a universal constant \(C>0\) such that

$$\begin{aligned} \Vert f\Vert _{L^\infty _0({\mathbb {T}}\times {\mathbb {R}}^+)}\le & {} C(\Vert \partial _y f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)}+\Vert \partial _{xy}^2 f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)})^{\frac{1}{2}} (\Vert f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)}\nonumber \\&\quad +\Vert \partial _x f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)})^{\frac{1}{2}}, \end{aligned}$$
(A.2)

or equivalently

$$\begin{aligned} \Vert f\Vert _{L^\infty _0({\mathbb {T}}\times {\mathbb {R}}^+)}\le & {} C(\Vert f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)}+\Vert \partial _x f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)} +\Vert \partial _y f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)}\nonumber \\&\quad +\Vert \partial _{xy}^2 f\Vert _{L^2_0({\mathbb {T}}\times {\mathbb {R}}^+)}). \end{aligned}$$
(A.3)

Proof

Indeed, the estimate (A.3) follows directly from estimate (A.2) and the Cauchy–Schwartz inequality. Hence, we only give the proof for the estimate (A.2). On one hand, thanks to the one-dimensional Sobolev inequality for the \(y-\)variable, we get

$$\begin{aligned} |f(x, y)|^2 \le C\left( \int _0^\infty |\partial _\xi f(x, \xi )|^2d\xi \right) ^{\frac{1}{2}} \left( \int _0^\infty |f(x, \xi )|^2d\xi \right) ^{\frac{1}{2}}. \end{aligned}$$
(A.4)

On the other hand, we apply the following one-dimensional Sobolev inequality for \(x-\)variable to get

$$\begin{aligned} |f(x, y)|^2\le & {} C(\Vert f(y)\Vert _{L^2({\mathbb {T}})}^2+\Vert \partial _x f(y)\Vert _{L^2({\mathbb {T}})}^2), \quad |\partial _y f(x, y)|^2\nonumber \\\le & {} C(\Vert \partial _y f(y)\Vert _{L^2({\mathbb {T}})}^2+\Vert \partial _{xy} f(y)\Vert _{L^2({\mathbb {T}})}^2). \end{aligned}$$
(A.5)

Therefore, substituting the estimate (A.5) into (A.4), we complete the proof of estimate (A.2). \(\square \)

Now we will state the Moser type inequality as follow:

Lemma A.3

Denote \(\Omega :={\mathbb {T}}\times {\mathbb {R}}^+\), let the proper functions \(f(t, x, y): {\mathbb {R}}^+\times \Omega \rightarrow {\mathbb {R}}\) and \(g(t, x, y): {\mathbb {R}}^+ \times \Omega \rightarrow {\mathbb {R}}\). Then, there exists a constant \(C_m>0\) such that

$$\begin{aligned}&\int _0^t \Vert ({\mathcal {Z}}^{\beta } f {\mathcal {Z}}^{\gamma }g)(\tau )\Vert _{L^2_l(\Omega )}^2d\tau \le C_m(\Vert \langle y \rangle ^{l_1} f\Vert _{L^\infty _{x,y,t}}^2\nonumber \\&\quad \int _0^t \Vert g\Vert _{{\mathcal {H}}^{m}_{l_2}}^2 d\tau +\Vert \langle y \rangle ^{l_1} g\Vert _{L^\infty _{x,y,t}}^2\int _0^t \Vert f\Vert _{{\mathcal {H}}^{m}_{l_2}}^2 d\tau ), \end{aligned}$$
(A.6)

where \(|\beta +\gamma |=m\) and \(l_1+l_2=l\).

Proof

For any \(p\ge 2\), due to the relation \(|Z_2 f|^p=Z_2(f Z_2 f |Z_2 f|^{p-2})-(p-1)f Z_2^2 f|Z_2 f|^{p-2}\), we find

$$\begin{aligned}&\int _{{\mathbb {R}}^+} \langle y \rangle ^{\theta l p}|Z_2 f|^p dy =\int _{{\mathbb {R}}^+}\langle y \rangle ^{\theta l p} Z_2(f Z_2 f |Z_2 f|^{p-2}) dy -(p-1) \\&\quad \int _{{\mathbb {R}}^+}\langle y \rangle ^{\theta l p}f Z_2^2 f|Z_2 f|^{p-2}dy. \end{aligned}$$

Integrating by part and applying the Hölder inequality, we find for \(0 \le \theta \le 1\) and \(0\le \theta _1 \le \frac{\theta }{2}\) that

$$\begin{aligned} \begin{aligned}&\Vert \langle y \rangle ^{\theta l} Z_2 f\Vert _{L_0^p({\mathbb {R}}^+)}^p\\&\quad \le C_p \int _{{\mathbb {R}}^+}\langle y \rangle ^{\theta l p-1} |f|(|Z_2 f|+|Z_2^2 f|)|Z_2 f|^{p-2} dy\\&\quad \le C_p\Vert \langle y \rangle ^{\theta l} Z_2 f\Vert _{L_0^p({\mathbb {R}}^+)}^{p-2} \Vert \langle y \rangle ^{\theta _1 l} f\Vert _{L_0^q({\mathbb {R}}^+)} \Vert \langle y \rangle ^{(2\theta -\theta _1) l}(|Z_2 f|,|Z_2^2 f|)\Vert _{L_0^r({\mathbb {R}}^+)}, \end{aligned} \end{aligned}$$

and hence, it follows

$$\begin{aligned} \Vert \langle y \rangle ^{\theta l} Z_2 f\Vert _{L_0^p({\mathbb {R}}^+)}^2 \le C_p \Vert \langle y \rangle ^{\theta _1 l} f\Vert _{L_0^q({\mathbb {R}}^+)} \sum _{1\le k \le 2}\Vert \langle y \rangle ^{(2\theta -\theta _1) l}Z_2^k f\Vert _{L_0^r({\mathbb {R}}^+)}. \end{aligned}$$

Here \(\frac{1}{q}+\frac{1}{r}=\frac{2}{p}\). Integrating with respect to t and x variables, and applying Hölder inequality, we get

$$\begin{aligned} \Vert \langle y \rangle ^{\theta l} Z_2 f\Vert _{L^p(Q_T)}^2 \le C_p \Vert \langle y \rangle ^{\theta _1 l} f\Vert _{L^q(Q_T)} \sum _{1\le k \le 2}\Vert \langle y \rangle ^{(2\theta -\theta _1) l}Z_2^k f\Vert _{L^r(Q_T)}. \end{aligned}$$

Here \(Q_T=\Omega \times [0, T]\). Similarly, it is easy to justify for \(i=0,1\),

$$\begin{aligned} \Vert \langle y \rangle ^{\theta l} Z_i f\Vert _{L^p_0(Q_T)}^2 \le C_p \Vert \langle y \rangle ^{\theta _1 l} f\Vert _{L^q_0(Q_T)} \sum _{1\le k \le 2}\Vert \langle y \rangle ^{(2\theta -\theta _1) l}Z_i^k f\Vert _{L^r_0(Q_T)}. \end{aligned}$$

Here \(\frac{1}{q}+\frac{1}{r}=\frac{2}{p}\). By multiple application of the above inequality, we get(proof by induction)

$$\begin{aligned}&\Vert \langle y \rangle ^{(|\alpha |\theta -(|\alpha |-1)\theta _1)l} {\mathcal {Z}}^\alpha f\Vert _{L^{p_1}_0(Q_T)} \le C_p \Vert \langle y \rangle ^{\theta _1 l} f\Vert _{L^{q_1}_0(Q_T)}^{1-\frac{|\alpha |}{m}} \\&\quad \sum _{1\le |\beta | \le m}\Vert \langle y \rangle ^{(m\theta -(m-1)\theta _1) l} {\mathcal {Z}}^{\beta } f\Vert _{L^{r_1}_0(Q_T)}^{{\frac{|\alpha |}{m}}}, \end{aligned}$$

where \(\frac{1}{p_1}=\frac{1}{q_1}(1-\frac{|\alpha |}{m})+\frac{|\alpha |}{r_1 m}\) and \(1\le |\alpha | \le m-1\). Then, we get for \(|\beta |+|\gamma |=m\) that

$$\begin{aligned} \begin{aligned}&\Vert \langle y \rangle ^{l}{\mathcal {Z}}^{\beta }f {\mathcal {Z}}^{\gamma } g\Vert _{L^2_0(Q_T)}^2 \\&\quad \le C \Vert \langle y \rangle ^{\frac{|\beta |}{m}l+(1-\frac{2|\beta |}{m})l_1} {\mathcal {Z}}^{\beta }f \Vert _{L^{\frac{2m}{|\beta |}}_0(Q_T)}^2 \Vert \langle y \rangle ^{\frac{|\gamma |}{m}l+(\frac{2|\beta |}{m}-1)l_1}{\mathcal {Z}}^{\gamma } f\Vert _{L^{\frac{2m}{|\gamma |}}_0(Q_T)}^2\\&\quad \le C_m \Vert \langle y \rangle ^{l_1}f\Vert _{L^\infty _0(Q_T)}^{2(1-\frac{|\beta |}{m})} \sum _{1\le |\beta | \le m}\Vert \langle y \rangle ^{l-l_1}{\mathcal {Z}}^{\beta }f\Vert _{L^2_0(Q_T)}^{\frac{2|\beta |}{m}}\\&\qquad \times \Vert \langle y \rangle ^{l_1} g\Vert _{L^\infty _0(Q_T)}^{2(1- \frac{|\gamma |}{m})} \sum _{1\le |\gamma | \le m}\Vert \langle y \rangle ^{l-l_1}{\mathcal {Z}}^{\gamma } g\Vert _{L^2_0(Q_T)}^{\frac{2|\gamma |}{m}}\\&\quad \le C_m \Vert f\Vert _{L^\infty _{l_1}(Q_T)}^2\sum _{1\le |\beta | \le m}\Vert {\mathcal {Z}}^\beta g\Vert _{L^2_{l-l_1}(Q_T)}^2 +C_m \Vert g\Vert _{L^\infty _{l_1}(Q_T)}^2\sum _{1\le |\beta | \le m}\Vert {\mathcal {Z}}^\beta f\Vert _{L^2_{l-l_1}(Q_T)}^2. \end{aligned} \end{aligned}$$

Therefore, we complete the proof of this lemma. \(\square \)

Finally, we establish the following \(L^\infty -\)estimate with weight for the heat equation.

Lemma A.4

For the heat equation \(\partial _t F(t, x)-\epsilon \partial _x^2 F(t, x)=G(t, x), \ (t, x) \in {\mathbb {R}}^+\times {\mathbb {R}}^+\); with the boundary condition \(F(t, x)|_{x=0}=0\) and initial data \(F(t, x)|_{t=0}=F_0\). Then, it holds true

$$\begin{aligned} \Vert x\partial _x F\Vert _{L^\infty _0({\mathbb {R}}^+)}\le & {} C(\Vert F_0\Vert _{L^\infty _0({\mathbb {R}}^+)}+\Vert x\partial _x F_0\Vert _{L^\infty _0({\mathbb {R}}^+)}) \nonumber \\&\quad +\,C\int _0^t (\Vert G\Vert _{L^\infty _0({\mathbb {R}}^+)}+\Vert x\partial _x G\Vert _{L^\infty _0({\mathbb {R}}^+)}) d\tau , \end{aligned}$$
(A.7)

where C is a constant independent of the parameter \(\epsilon \).

Proof

First of all, let us consider the heat equation

$$\begin{aligned} \partial _t H(t, x)-\epsilon \partial _x^2 H(t, x)=0,\quad (t, x) \in {\mathbb {R}}^+\times {\mathbb {R}}^+; \end{aligned}$$
(A.8)

with the initial data and boundary condition

$$\begin{aligned} H(t, x)|_{t=0}=H_0(x),\quad x \in {\mathbb {R}}^+; \quad H(t, x)|_{x=0}=0,\quad t \in {\mathbb {R}}^+. \end{aligned}$$

In order to transform the problem (A.8) into a problem in the whole space, let us define \({\widetilde{H}}(t, x)\) by

$$\begin{aligned} {\widetilde{H}}(t, x)= H(t, x), \ x>0;\quad {\widetilde{H}}(t, x)= -H(t, -x), \ x<0, \end{aligned}$$

and define the initial data \({\widetilde{H}}_0(x)\) by

$$\begin{aligned} {\widetilde{H}}_0(x)= H_0(x), \ x>0;\quad {\widetilde{H}}_0(x)= -H_0(-x), \ x<0. \end{aligned}$$

It is easy to justify that the function \({\widetilde{H}}(t, x)\) solves the following evolution equation

$$\begin{aligned} \partial _t {\widetilde{H}}(t, x)-\epsilon \partial _x^2 {\widetilde{H}}(t, x)=0,\quad (t, x) \in {\mathbb {R}}^+\times {\mathbb {R}}; \quad {\widetilde{H}}(t, x)|_{t=0}={\widetilde{H}}_0(x), \quad x \in {\mathbb {R}}.\nonumber \\ \end{aligned}$$
(A.9)

Define \(S(t, x)=\frac{1}{\sqrt{4\pi \epsilon t}}e^{-\frac{|x|^2}{\sqrt{4\epsilon t}}}\), then the solution of evolution (A.9) can be expressed as

$$\begin{aligned} {\widetilde{H}}(t, x)=\int _{{\mathbb {R}}} {\widetilde{H}}_0(\xi )S(t, x-\xi )d\xi , \end{aligned}$$
(A.10)

which implies directly

$$\begin{aligned} x \partial _x {\widetilde{H}}(t, x)=\int _{{\mathbb {R}}} {\widetilde{H}}_0(\xi )x \partial _x S(t, x-\xi )d\xi . \end{aligned}$$

In view of the relation \(x \partial _x S(t, x-\xi )=(x-\xi )\partial _x S(t, x-\xi )+\xi \partial _x S(t, x-\xi )\), we get

$$\begin{aligned} x \partial _x {\widetilde{H}}(t, x)=\int _{{\mathbb {R}}} {\widetilde{H}}_0(\xi )(x-\xi ) \partial _x S(t, x-\xi )d\xi +\int _{{\mathbb {R}}} {\widetilde{H}}_0(\xi )\xi \partial _x S(t, x-\xi )d\xi . \end{aligned}$$

Due to \(\int _{{\mathbb {R}}}|(x-\xi ) \partial _x S(t, x-\xi )|d\xi \le C\), it follows

$$\begin{aligned} \Bigg |\int _{{\mathbb {R}}} {\widetilde{H}}_0(\xi )(x-\xi ) \partial _x S(t, x-\xi )d\xi \Bigg | \le C\Vert {\widetilde{H}}_0\Vert _{L^\infty _0({\mathbb {R}})}. \end{aligned}$$

Using the equality \(\partial _x S(t, x-\xi )=-\partial _{\xi } S(t, x-\xi )\), the integration by part yields directly

$$\begin{aligned} \Bigg |\int _{{\mathbb {R}}}{\widetilde{H}}_0(\xi )\xi \partial _x S(t, x-\xi )d\xi \Bigg | \le C(\Vert {\widetilde{H}}_0\Vert _{L^\infty _0({\mathbb {R}})} +\Vert x \partial _x {\widetilde{H}}_0\Vert _{L^\infty _0({\mathbb {R}})}), \end{aligned}$$

and hence, we get

$$\begin{aligned} \begin{aligned} \Vert x \partial _x H (t, x)\Vert _{L^\infty _0({\mathbb {R}}^+)}&\le \Vert x \partial _x {\widetilde{H}}(t, x)\Vert _{L^\infty _0({\mathbb {R}})} \le C \Vert ({\widetilde{H}}_0, x \partial _x {\widetilde{H}}_0)\Vert _{L^\infty _0({\mathbb {R}})})\\&\le C (\Vert {H}_0\Vert _{L^\infty _0({\mathbb {R}}^+)} +\Vert x \partial _x {H}_0\Vert _{L^\infty _0({\mathbb {R}}^+)}). \end{aligned} \end{aligned}$$

This, along with representation (A.10) and the well-known Duhamel formula, we complete the proof of this lemma. \(\square \)

Appendix B: Almost equivalence of weighted norms

In this subsection we will use the quantity \(h^\epsilon _m\) in weighted norm, \(h^\epsilon \) and its derivatives in \(L^\infty \) norm to control the quantities \(Z_\tau ^{\alpha _1}h^\epsilon \) and \(Z_\tau ^{\alpha _1}\psi ^\epsilon \) in weighted norm. To derive these estimates, we shall apply the Lemma A.1, which has been introduced previously in Appendix A.

Lemma B.1

Let the stream function \(\psi ^\epsilon (t, x, y)\) satisfies \(\partial _y \psi ^\epsilon =h^\epsilon , \partial _x \psi ^\epsilon = -g^\epsilon , \psi ^\epsilon |_{y=0}=0\). There exists a constant \(\delta \in (0, 1)\), such that \(h^\epsilon (t, x, y)+1\ge \delta , \forall (t, x, y)\in [0, T]\times \Omega \). Then, for \(l \ge 1\) and \(|\alpha _1|=m\), we have the following estimates:

$$\begin{aligned}&\Vert \frac{Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}\Vert _{L^2_{l-1}(\Omega )}\le \frac{2 \delta ^{-1}}{2l-1} \Vert h^\epsilon _m \Vert _{L^2_l(\Omega )}, \end{aligned}$$
(B.1)
$$\begin{aligned}&\Vert Z^{\alpha _1}_\tau h^\epsilon \Vert _{L^2_l}(\Omega ) \le \Vert h^\epsilon _m\Vert _{L^2_l(\Omega )} +\frac{2 \delta ^{-1}}{2l-1} \Vert \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )} \Vert h^\epsilon _m \Vert _{L^2_l(\Omega )}, \end{aligned}$$
(B.2)
$$\begin{aligned}&\Vert \frac{\partial _x Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}\Vert _{L^2_{l-1}(\Omega )} \le \frac{2\delta ^{-1}}{2l-1} \Vert \partial _x h^\epsilon _m\Vert _{L^2_{l}(\Omega )} +\frac{4\delta ^{-2}}{2l-1} \Vert \partial _x h^\epsilon \Vert _{L^\infty _0(\Omega )}\Vert h^\epsilon _m\Vert _{L^2_{l}(\Omega )}, \end{aligned}$$
(B.3)
$$\begin{aligned}&\Vert \partial _y Z^{\alpha _1}_\tau h^\epsilon \Vert _{L^2_l(\Omega )} \le \Vert \partial _y h^\epsilon _m \Vert _{L^2_l(\Omega )}+C_l \delta ^{-1}(\Vert \partial _y h^\epsilon \Vert _{L^\infty _0(\Omega )} \nonumber \\&\quad \quad +\Vert Z_2 \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )})\Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}, \end{aligned}$$
(B.4)

where the constant \(C_l\) depends only on l.

Proof

(i) By virtue of the definition \(h^\epsilon _m=Z_\tau ^{\alpha _1}h^\epsilon -\frac{\partial _y h^\epsilon }{h^\epsilon +1} Z_\tau ^{\alpha _1} \psi ^\epsilon \), it is easy to obtain \(h^\epsilon _m=(h^\epsilon +1)\partial _y(\frac{Z_\tau ^{\alpha _1} \psi ^\epsilon }{h^\epsilon +1})\). Integrating over [0, y] and applying the boundary condition \(\psi ^\epsilon |_{y=0}=0\), we have

$$\begin{aligned} \frac{Z_\tau ^{\alpha _1} \psi ^\epsilon }{h^\epsilon +1}= \int _0^y \frac{h^\epsilon _m}{h^\epsilon +1}d\xi , \end{aligned}$$
(B.5)

and along with the Hardy inequality (A.1), yields directly

$$\begin{aligned} \Vert \frac{Z_\tau ^{\alpha _1} \psi ^\epsilon }{h^\epsilon +1} \Vert _{L^2_{l-1}(\Omega )}\le & {} \Bigg \Vert \int _0^y \frac{h^\epsilon _m}{h^\epsilon +1}d\xi \Bigg \Vert _{L^2_{l-1}(\Omega )} \le \frac{2}{2l-1}\Vert \frac{h^\epsilon _m}{h^\epsilon +1} \Vert _{L^2_l(\Omega )} \nonumber \\\le & {} \frac{2 \delta ^{-1}}{2l-1} \Vert h^\epsilon _m \Vert _{L^2_l(\Omega )}, \end{aligned}$$
(B.6)

where we have used the fact \(h^\epsilon +1\ge \delta \) in the last inequality.

(ii) In view of the relation \(Z_\tau ^{\alpha _1}h^\epsilon =h^\epsilon _m+\frac{\partial _y h^\epsilon }{h^\epsilon +1} Z_\tau ^{\alpha _1} \psi ^\epsilon \), we get

$$\begin{aligned} \Vert Z^{\alpha _1}_\tau h^\epsilon \Vert _{L^2_l(\Omega )} \le \Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}+\Vert \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )} \Bigg \Vert \frac{ Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}\Bigg \Vert _{L^2_{l-1}(\Omega )}, \end{aligned}$$

which, together with estimate (B.6), yields directly

$$\begin{aligned} \Vert Z^{\alpha _1}_\tau h^\epsilon \Vert _{L^2_l(\Omega )} \le \Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}+\frac{2 \delta ^{-1}}{2l-1} \Vert \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )} \Vert h^\epsilon _m \Vert _{L^2_l(\Omega )}. \end{aligned}$$
(B.7)

(iii) Differentiating the equality \({Z_\tau ^{\alpha _1} \psi ^\epsilon }=(h^\epsilon +1)\int _0^y \frac{h^\epsilon _m}{h^\epsilon +1}d\xi \) with respect to x variable, we find

$$\begin{aligned} \partial _x Z_\tau ^{\alpha _1} \psi ^\epsilon =\partial _x h^\epsilon \int _0^y \frac{h^\epsilon _m}{h^\epsilon +1} d\xi +(h^\epsilon +1)\int _0^y \frac{\partial _x h^\epsilon _m}{h^\epsilon +1}d\xi -(h^\epsilon +1)\int _0^y \frac{h^\epsilon _m \partial _x h^\epsilon }{(h^\epsilon +1)^2}d\xi , \end{aligned}$$

which, implies that

$$\begin{aligned} \frac{\partial _x Z_\tau ^{\alpha _1} \psi ^\epsilon }{h^\epsilon +1} =\frac{\partial _x h^\epsilon }{h^\epsilon +1}\int _0^y \frac{h^\epsilon _m}{h^\epsilon +1} d\xi +\int _0^y \frac{\partial _x h^\epsilon _m}{h^\epsilon +1}d\xi -\int _0^y \frac{h^\epsilon _m \partial _x h^\epsilon }{(h^\epsilon +1)^2}d\xi , \end{aligned}$$

and hence, we apply the Hardy inequality (A.1) and \(h^\epsilon +1 \ge \delta \) to get

$$\begin{aligned} \begin{aligned} \Vert \frac{\partial _x Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}\Vert _{L^2_{l-1}(\Omega )}&\le \frac{4}{2l-1}\Vert \frac{\partial _x h^\epsilon }{h^\epsilon +1}\Vert _{L^\infty _0(\Omega )}\Vert \frac{h^\epsilon _m}{h^\epsilon +1}\Vert _{L^2_{l}(\Omega )} +\frac{2}{2l-1} \Vert \frac{\partial _x h^\epsilon _m}{h^\epsilon +1} \Vert _{L^2_{l}(\Omega )}\\&\le \frac{2\delta ^{-1}}{2l-1} \Vert \partial _x h^\epsilon _m\Vert _{L^2_{l}(\Omega )} +\frac{4\delta ^{-2}}{2l-1} \Vert \partial _x h^\epsilon \Vert _{L^\infty _0(\Omega )}\Vert h^\epsilon _m\Vert _{L^2_{l}(\Omega )}. \end{aligned}\nonumber \\ \end{aligned}$$
(B.8)

(iv)Differentiating the equality \(Z_\tau ^{\alpha _1}h^\epsilon =h^\epsilon _m+\frac{\partial _y h^\epsilon }{h^\epsilon +1} Z_\tau ^{\alpha _1} \psi ^\epsilon \) with the y variable, it follows

$$\begin{aligned} \partial _y Z^{\alpha _1}_\tau h^\epsilon =\partial _y h^\epsilon _m +\partial _y^2 h^\epsilon \frac{Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}+\partial _y h^\epsilon \partial _y \left( \frac{Z^{\alpha _1}_\tau \psi ^\epsilon }{h^\epsilon +1}\right) , \end{aligned}$$

which, together with the relation (B.5), yields

$$\begin{aligned} \begin{aligned} \partial _y Z^{\alpha _1}_\tau h^\epsilon&=\partial _y h^\epsilon _m +\partial _y^2 h^\epsilon \int _0^y \frac{h^\epsilon _m}{h^\epsilon +1}d\xi +\eta _h h^\epsilon _m\\&=\partial _y h^\epsilon _m +Z_2 \partial _y h^\epsilon \frac{1}{\varphi (y)}\int _0^y \frac{h^\epsilon _m}{h^\epsilon +1}d\xi +\eta _h h^\epsilon _m, \end{aligned} \end{aligned}$$

where \(\varphi (y)=\frac{y}{1+y}\) and \(\eta _h=\frac{\partial _y h^\epsilon }{h^\epsilon +1}\). The application of Hardy inequality (A.1) and \(h^\epsilon +1\ge \delta \) yields

$$\begin{aligned} \begin{aligned} \Vert \partial _y Z^{\alpha _1}_\tau h^\epsilon \Vert _{L^2_l(\Omega )}&\le \Vert \partial _y h^\epsilon _m \Vert _{L^2_l(\Omega )}+\frac{2\delta ^{-1}}{2l-1}\Vert Z_2 \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )} \Vert h^\epsilon _m \Vert _{L^2_{l}(\Omega )}\\&\quad +\delta ^{-1}\Vert \partial _y h^\epsilon \Vert _{L^\infty _0(\Omega )}\Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}\\&\le \Vert \partial _y h^\epsilon _m \Vert _{L^2_l(\Omega )} +\frac{(2l+1) \delta ^{-1}}{2l-1}(\Vert \partial _y h^\epsilon \Vert _{L^\infty _0(\Omega )} \\&\qquad +\Vert Z_2 \partial _y h^\epsilon \Vert _{L^\infty _1(\Omega )})\Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}. \end{aligned} \end{aligned}$$
(B.9)

Therefore, the estimates (B.6)–(B.9) imply the estimates (B.1)–(B.4). \(\square \)

Let us define

$$\begin{aligned} Y_{m,l}(t):=1+{{\Vert (\varrho ^\epsilon , u^\epsilon , h^\epsilon )(t)\Vert _{{\mathcal {H}}^m_l}^2}}+\Vert \partial _y(\varrho ^\epsilon , u^\epsilon , h^\epsilon )(t)\Vert _{{\mathcal {H}}^{m-1}_l}^2 +\Vert \partial _y \varrho ^\epsilon (t)\Vert _{{\mathcal {H}}^{1,\infty }_1}^2, \end{aligned}$$
(B.10)

and hence we will establish the following almost equivalent relation.

Lemma B.2

Let \((\varrho ^\epsilon , u^\epsilon , v^\epsilon , h^\epsilon , g^\epsilon )\) be sufficiently smooth solution, defined on \([0, T^\epsilon ]\), to the regularized MHD boundary layer equations (3.2)–(3.3). There exists a constant \(\delta \in (0, 1)\), such that \(h^\epsilon (t, x, y)+1\ge \delta , \forall (t, x, y)\in [0, T]\times \Omega \). Then, for \(m \ge 4\) and \(l \ge 1\), it holds true

$$\begin{aligned} \Theta _{m,l}(t) \le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^4 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^4 +C_l \delta ^{-8}{\mathcal {N}}_{m,l}^{12}(t), \end{aligned}$$
(B.11)

and

$$\begin{aligned} {\mathcal {N}}_{m,l}(t) \le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^4 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^4 +C\delta ^{-8} \Theta _{m,l}^{12}(t), \end{aligned}$$
(B.12)

where \(\Theta _{m,l}(t)\) and \({\mathcal {N}}_{m,l}(t)\) are defined in (3.5) and (3.114) respectively.

Proof

By virtue of the definition \(\varrho ^\epsilon _m=Z_\tau ^{\alpha _1} \varrho ^\epsilon -\frac{\partial _y \varrho ^\epsilon }{h^\epsilon +1}Z_\tau ^{\alpha _1}\psi ^\epsilon \) and the estimate (B.1), we find

$$\begin{aligned} \begin{aligned} \Vert Z_\tau ^{\alpha _1} \varrho ^\epsilon \Vert _{L^2_l(\Omega )}^2&\le \Vert \varrho ^\epsilon _m\Vert _{L^2_l(\Omega )}^2+\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert \frac{Z_\tau ^{\alpha _1 }\psi ^\epsilon }{h^\epsilon +1}\Vert _{L^2_{l-1}(\Omega )}^2\\&\le \Vert \varrho ^\epsilon _m\Vert _{L^2_l(\Omega )}^2+C_l \delta ^{-2}\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert h^\epsilon _m\Vert _{L^2_{l}(\Omega )}^2. \end{aligned} \end{aligned}$$

Similarly, we can obtain for \(|\alpha _1|=m\) that

$$\begin{aligned} \Vert Z_\tau ^{\alpha _1}(u^\epsilon , h^\epsilon )\Vert _{L^2_l(\Omega )}^2 \le \Vert (u^\epsilon _m, h^\epsilon _m)\Vert _{L^2_l(\Omega )}^2+C_l \delta ^{-2}(1+\Vert \partial _y (u^\epsilon , h^\epsilon )\Vert _{L^\infty _1(\Omega )}^2)\Vert h^\epsilon _m\Vert _{L^2_{l}(\Omega )}^2. \end{aligned}$$

The combination of the above two estimates yields directly

$$\begin{aligned} \Vert Z_\tau ^{\alpha _1}(\varrho ^\epsilon , u^\epsilon , h^\epsilon )\Vert _{L^2_l(\Omega )}^2 \le C_l \delta ^{-2}(1+\Vert \partial _y (\varrho ^\epsilon , u^\epsilon , h^\epsilon )\Vert _{L^\infty _1(\Omega )}^2)\Vert (\varrho ^\epsilon _m, u^\epsilon _m, h^\epsilon _m)\Vert _{L^2_l(\Omega )}^2,\nonumber \\ \end{aligned}$$
(B.13)

and hence, we have for \(m \ge 4, l \ge 1\)

$$\begin{aligned} \begin{aligned}&\Vert Z_\tau ^{\alpha _1}(\varrho ^\epsilon , u^\epsilon , h^\epsilon )\Vert _{L^2_l(\Omega )}^2 \\&\quad \le C\Vert \partial _y(u^\epsilon , h^\epsilon )\Vert _{L^\infty _1(\Omega )}^4 +C\delta ^{-4}(1+\Vert (\varrho ^\epsilon _m, u^\epsilon _m, h^\epsilon _m)\Vert _{L^2_l(\Omega )}^4+\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^4)\\&\quad \le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2+C_l \delta ^{-4}(1+X_{m,l}^6(t)). \end{aligned}\qquad \end{aligned}$$
(B.14)

Due to the definition of \(X_{m,l}(t)\) and \(Y_{m,l}(t)\) in (3.56) and (B.10) respectively, we get from (B.14) that

$$\begin{aligned} Y_{m,l}(t)\le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2+C_l \delta ^{-4}(1+X_{m,l}^6(t)).\qquad \end{aligned}$$
(B.15)

On the other hand, by virtue of the definition of \(\varrho ^\epsilon _m(t)\) and the estimate (B.1), we find

$$\begin{aligned} \begin{aligned} \Vert \varrho ^\epsilon _m(t)\Vert _{L^2_l(\Omega )}^2&\le \Vert Z_\tau ^{\alpha _1} \varrho ^\epsilon (t)\Vert _{L^2_l(\Omega )}^2 +\Vert \partial _y \varrho ^\epsilon (t)\Vert _{L^\infty _1(\Omega )}^2\Vert \frac{Z_\tau ^{\alpha _1 }\psi ^\epsilon }{h^\epsilon +1}(t)\Vert _{L^2_{l-1}(\Omega )}^2\\&\le \Vert Z_\tau ^{\alpha _1} \varrho ^\epsilon (t)\Vert _{L^2_l(\Omega )}^2+C_l\delta ^{-2}\Vert \partial _y \varrho ^\epsilon (t)\Vert _{L^\infty _1(\Omega )}^2\Vert Z_\tau ^{\alpha _1}h^\epsilon (t)\Vert _{L^2_{l}(\Omega )}^2, \end{aligned} \end{aligned}$$

and hence, we also have

$$\begin{aligned} \begin{aligned} \Vert (u^\epsilon _m, h^\epsilon _m)(t)\Vert _{L^2_l(\Omega )}^2&\le \Vert Z_\tau ^{\alpha _1}(u^\epsilon , h^\epsilon )(t)\Vert _{L^2_l(\Omega )}^2 \\&\quad +C\delta ^{-2}(1+\Vert \partial _y (u^\epsilon , h^\epsilon )(t)\Vert _{L^\infty _1(\Omega )}^2)\Vert Z_\tau ^{\alpha _1}h^\epsilon (t)\Vert _{L^2_{l}(\Omega )}^2. \end{aligned} \end{aligned}$$

Then, the combination of the above estimates yields directly

$$\begin{aligned}&\Vert (\varrho ^\epsilon _m, u^\epsilon _m, h^\epsilon _m)(t)\Vert _{L^2_l}^2 \le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2 \nonumber \\&\quad +C_l\delta ^{-4}(1+Y_{m,l}^6(t)), \end{aligned}$$
(B.16)

where \(m \ge 4, l \ge 1\). According to the definition of \(X_{m,l}(t)\) and \(Y_{m,l}(t)\), we get from (B.16) that

$$\begin{aligned} X_{m,l}(t)\le C\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +C t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2+C_l \delta ^{-4}(1+Y_{m,l}^6(t)).\quad \end{aligned}$$
(B.17)

Next, by virtue of the definition \(\varrho ^\epsilon _m(t)\) and estimate (3.89), we find

$$\begin{aligned} \begin{aligned} \Vert \partial _x Z_\tau ^{\alpha _1} \varrho ^\epsilon \Vert _{L^2_l(\Omega )}^2&\le \Vert \partial _x \varrho ^\epsilon _m\Vert _{L^2_l(\Omega )}^2+C_l \delta ^{-2}\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert \partial _x h^\epsilon _m\Vert _{L^2_l(\Omega )}^2\\&\quad +C_l \delta ^{-4}(\Vert \partial _{xy} \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2 +\Vert \partial _{y} \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert \partial _{x} h^\epsilon \Vert _{L^\infty _1(\Omega )}^2)\Vert h^\epsilon _m\Vert _{L^2_l(\Omega )}^2\\&\le \Vert \partial _x \varrho ^\epsilon _m\Vert _{L^2_l(\Omega )}^2+C_l \delta ^{-2} X_{m,l}(t) \Vert \partial _x h^\epsilon _m\Vert _{L^2_l(\Omega )}^2 +C_l \delta ^{-4}(1+ X_{m,l}^3(t)). \end{aligned} \end{aligned}$$

Similarly, by routine checking, we may conclude that

$$\begin{aligned} \begin{aligned}&\Vert \partial _x Z_\tau ^{\alpha _1} (u^\epsilon , h^\epsilon )\Vert _{L^2_l(\Omega )}^2 \\&\quad \le C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2) +C_l\delta ^{-8}(1+X_{m,l}^6(t))\\&\qquad \!+\!C_l \delta ^{-2}(1+\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l} +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}\\&\qquad +X_{m,l}^3(t) )\Vert \partial _x h^\epsilon _m\Vert _{L^2_l(\Omega )}^2\\&\qquad +\Vert \partial _x (u^\epsilon _m, h^\epsilon _m)\Vert _{L^2_l(\Omega )}^2. \end{aligned}\qquad \end{aligned}$$

for \(m\ge 5, l \ge 1\), and hence it follows

$$\begin{aligned} \begin{aligned}&\epsilon \Vert \partial _x(\varrho ^\epsilon , u^\epsilon , h^\epsilon )\Vert _{{\mathcal {H}}^m_l}^2 \\&\quad \le C_l \delta ^{-2}(1+\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l} +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}+X_{m,l}^3(t) )D_x^{m,l}(t)\\&\qquad +C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2)+C_l \delta ^{-8}(1+X_{m,l}^6(t)), \end{aligned} \end{aligned}$$
(B.18)

where \(D_x^{m,l}(t)\) is defined in (3.115). By virtue of the definition \(\varrho ^\epsilon _m(t)\) and estimate (3.86), we get

$$\begin{aligned} \begin{aligned} \Vert \partial _x \varrho ^\epsilon _m\Vert _{L^2_l(\Omega )}^2&\le \Vert \partial _x Z_\tau ^{\alpha _1} \varrho ^\epsilon \Vert _{L^2_l(\Omega )}^2 +C\delta ^{-2}\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert \partial _x Z_\tau ^{\alpha _1}h^\epsilon \Vert _{L^2_{l}(\Omega )}^2\\&\quad +C\delta ^{-4}(\Vert \partial _{xy}\varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2 +\Vert \partial _y \varrho ^\epsilon \Vert _{L^\infty _1(\Omega )}^2\Vert \partial _x h^\epsilon \Vert _{L^\infty _0(\Omega )}^2)\Vert Z_\tau ^{\alpha _1}h^\epsilon \Vert _{L^2_l(\Omega )}\\&\le \Vert \partial _x Z_\tau ^{\alpha _1} \varrho ^\epsilon \Vert _{L^2_l(\Omega )}^2 +C\delta ^{-2} Y_{m,l}(t) \Vert \partial _x Z_\tau ^{\alpha _1}h^\epsilon \Vert _{L^2_{l}}^2+C\delta ^{-4}(1+ Y_{m,l}^3(t)). \end{aligned} \end{aligned}$$

Similarly, by routine checking, we may conclude that

$$\begin{aligned} \begin{aligned}&\Vert \partial _x (u^\epsilon _m, h^\epsilon _m)\Vert _{L^2_l(\Omega )}^2 \\&\quad \le C\delta ^{-2}(1+\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l} +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}\\&\qquad +Y_{m,l}^3(t) ) \Vert \partial _x Z_\tau ^{\alpha _1}h^\epsilon \Vert _{L^2_{l}(\Omega )}^2\\&\quad +C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2)+C\delta ^{-8}(1+Y_{m,l}^6(t))\\&\quad +\Vert \partial _x Z_\tau ^{\alpha _1} (u^\epsilon , h^\epsilon )\Vert _{L^2_l(\Omega )}^2, \end{aligned} \end{aligned}$$

and hence, it follows

$$\begin{aligned} \begin{aligned} D_x^{m,l}(t)&\le C\delta ^{-2}(1+\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l} +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}\\&\quad + Y_{m,l}^3(t) )\epsilon \Vert \partial _x(\varrho ^\epsilon , u^\epsilon , h^\epsilon )\Vert _{{\mathcal {H}}^m_l}^2\\&\quad +C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^2 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^2)+C\delta ^{-8}(1+Y_{m,l}^6(t)). \end{aligned} \end{aligned}$$
(B.19)

where \(D_x^{m,l}(t)\) is defined in (3.115). Similarly, we can justify the estimates

$$\begin{aligned} \begin{aligned} \Vert \partial _y(\sqrt{\epsilon } \varrho ^\epsilon , \sqrt{\mu } u^\epsilon , \sqrt{\kappa } h^\epsilon )\Vert _{{\mathcal {H}}^m_l}^2&\le C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^4 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^4)\\&\quad +D_y^{m,l}(t)+C_l \delta ^{-8}(1+X_{m,l}^{12}(t)), \end{aligned} \end{aligned}$$
(B.20)

and

$$\begin{aligned} \begin{aligned} D_y^{m,l}(t)&\le C(\Vert (\rho _0, u_{10}, h_{10})\Vert _{\overline{{\mathcal {B}}}^m_l}^4 +t \Vert (\rho _0, u_{10}, h_{10})\Vert _{\widehat{{\mathcal {B}}}^m_l}^4)\\&\quad +\Vert \partial _y(\sqrt{\epsilon } \varrho ^\epsilon , \sqrt{\mu } u^\epsilon , \sqrt{\kappa } h^\epsilon )\Vert _{{\mathcal {H}}^m_l}^2+C\delta ^{-8}(1+Y_{m,l}^{12}(t)). \end{aligned} \end{aligned}$$
(B.21)

Therefore, the combination of estimates (B.15), (B.17), (B.18), (B.19), (B.20) and (B.21) can establish the estimates (B.11) and (B.12). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Huang, D. & Yao, Za. Boundary layer problems for the two-dimensional inhomogeneous incompressible magnetohydrodynamics equations. Calc. Var. 60, 67 (2021). https://doi.org/10.1007/s00526-021-01958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01958-y

Mathematics Subject Classification

Navigation