Skip to main content
Log in

Concentration profile, energy, and weak limits of radial solutions to semilinear elliptic equations with Trudinger–Moser critical nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the next Trudinger–Moser critical equations,

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\lambda ue^{u^2+\alpha |u|^\beta }&{}\text { in }B,\\ u=0&{}\text { on }\partial B, \end{array}\right. } \end{aligned}$$

where \(\alpha >0\), \((\lambda ,\beta )\in (0,\infty )\times (0,2)\) and \(B\subset {\mathbb {R}}^2\) is the unit ball centered at the origin. We classify the asymptotic behavior of energy bounded sequences of radial solutions. Via the blow–up analysis and a scaling technique, we deduce the limit profile, energy, and several asymptotic formulas of concentrating solutions together with precise information of the weak limit. In particular, we obtain a new necessary condition on the amplitude of the weak limit at the concentration point. This gives a proof of the conjecture by Grossi et al. (Math Ann, to appear) in 2020 in the radial case. Moreover, in the case of \(\beta \le 1\), we show that any sequence carries at most one bubble. This allows a new proof of the nonexistence of low energy nodal radial solutions for \((\lambda ,\beta )\) in a suitable range. Lastly, we discuss several counterparts of our classification result. Especially, we prove the existence of a sequence of solutions which carries multiple bubbles and weakly converges to a sign-changing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi: Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in \({\mathbb{R}}^2\). Proc. Indian Acad. Sci. Math. Sci. 99, 49–73 (1989)

    Article  MathSciNet  Google Scholar 

  2. Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the \(n\)-Laplacian. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 393–413 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Adimurthi, Karthik, A., Giacomoni J: Uniqueness of positive solutions of a \(n\)-Laplace equation in a ball in \({\mathbb{R}}^n\) with exponential nonlinearity. J. Differ. Equ. 260, 7739–7799 (2016)

    Article  Google Scholar 

  4. Adimurthi, Druet, O: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. in PDE. 29, 295–322 (2004)

  5. Adimurthi, Prashanth S: Failure of Palais-Smale condition and blow-up analysis for the critical exponent problem in \({\mathbb{R}}^2\). Proc. Indian Acad. Sci. Math. Sci. 107, 283–317 (1997)

    Article  MathSciNet  Google Scholar 

  6. Adimurthi, Struwe M: Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175, 125–167 (2000)

    Article  MathSciNet  Google Scholar 

  7. Adimurthi, Yadava, S.L: Multiplicity results for semilinear elliptic equations in a bounded domain of \({\mathbb{R}}^2\) involving critical exponents. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 481–504 (1990)

  8. Adimurthi, Yadava S.L: Nonexistence of Nodal Solutions of Elliptic Equations with Critical Growth in \({\mathbb{R}}^2\). Trans. Am. Math. Soc. 332, 449–458 (1992)

    MATH  Google Scholar 

  9. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  10. Carleson, L., Chang, A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Costa, D.G., Tintarev, C.: Concentration profiles for the Trudinger-Moser functional are shaped like toy pyramids. J. Funct. Anal. 266, 676–692 (2014)

    Article  MathSciNet  Google Scholar 

  12. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R}}^2\) with nonlinearities in the critical growth range. Calc. Var. 3, 139–153 (1995)

    Article  MathSciNet  Google Scholar 

  13. del Pino, M., Musso, M., Ruf, B.: New solutions for Trudinger-Moser critical equations in \({\mathbb{R}}^2\). J. Funct. Anal. 258, 421–457 (2010)

    Article  MathSciNet  Google Scholar 

  14. Druet, O.: Multibumps analysis in dimention \(2\): quantification of blow-up levels. Duke Math. J. 132, 217–269 (2006)

    Article  MathSciNet  Google Scholar 

  15. Druet, O., Thizy, P.D.: Multi-bumps analysis for Trudinger-Moses nonlinearities I-Quantification and location of concentration points. J. Eur. Math. Soc. 22, 4025–4096 (2020)

    Article  Google Scholar 

  16. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in \(2\) dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  17. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  18. Grossi, M., Grumiau, C., Pacella, F.: Lane Emden problems with large exponents and singular Liouville equations. J. Math. Pures Appl. 101, 735–754 (2014)

    Article  MathSciNet  Google Scholar 

  19. Grossi, M., Mancini, G., Naimen D., Pistoia, A.: Bubbling nodal solutions for a large perturbation of the Moser-Trudinger equation on planar domains. Math. Ann. https://doi.org/10.1007/s00208-020-01975-w

  20. Grossi, M., Naimen, D.: Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in \({\mathbb{R}}^2\), to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(20), 797–825 (2020)

    MATH  Google Scholar 

  21. Grossi, M., Saldaña, A., Hugo, T.: Sharp concentration estimates near criticality for radial sign-changing solutions of Dirichlet and Neumann problems. Proc. Lond. Math. Soc. 3(120), 39–64 (2020)

    Article  MathSciNet  Google Scholar 

  22. Hartman, P.: Ordinary differential equations. Reprint of the second edition, Birkhäuser, Boston, Mass (1982)

    MATH  Google Scholar 

  23. Hashizume, M.: Maximization problem on Trudinger-Moser inequality involving Lebesgue norm. J. Funct. Anal. 2020, 279 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Iacopetti, A., Pacella, F.: Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem in low dimensions. Contributions to nonlinear elliptic equations and systems, 325-343, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, (2015)

  25. Iacopetti, A., Vaira, G.: Sign-changing blowing-up solutions for the Brezis-Nirenberg problem in dimensions four and five. Ann. Scuola Norm. Sup. Pisa 18, 1–38 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Ibrahim, S., Masmoudi, N., Nakanishi, K., Sani, F.: Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities. J. Funct. Anal. 278, (2020)

  27. Kajikiya, R.: Sobolev norms of radially symmetric oscillatory solutions for superlinear elliptic equations. Hiroshima Math. J. 20, 259–276 (1990)

    Article  MathSciNet  Google Scholar 

  28. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  29. Malchiodi, A., Martinazzi, L.: Critical points of the Moser-Trudinger functional on a disk. J. Eur. Math. Soc. 16, 893–908 (2014)

    Article  MathSciNet  Google Scholar 

  30. Mancini, G., Martinazzi, L.: The Moser-Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. Partial Differential Equations 56, Art. 94, 26 pp (2017)

  31. Mancini, G., Thizy, P.D.: Glueing a peak to a non-zero limiting profile for a critical Moser-Trudinger equation. J. Math. Anal. Appl. 472, 1430–1457 (2019)

    Article  MathSciNet  Google Scholar 

  32. Moser, J.K.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  MathSciNet  Google Scholar 

  33. Pohozaev, S.I.: The Sobolev embedding in the case \(pl = n\), Proc. of the Technical Scientific Conference on Advances of Scientific Research 1964-1965, Mathematics Section, (Moskov. Energet. Inst., Moscow), 158-170 (1965)

  34. Strauss, A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  35. Thizy, P.D.: When does a perturbed Moser-Trudinger inequality admit an extremal? Anal. PDE 13, 1371–1415 (2020)

    Article  MathSciNet  Google Scholar 

  36. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks Prof. Massimo Grossi at Sapienza Università di Roma since some important questions and ideas in the present paper are inspired by the extensive discussion on the previous works with him. This work is partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Naimen.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B), Grant Number 17K14214.

Proof of Lemma 2.5

Proof of Lemma 2.5

In this appendix we show the proof of Lemma 2.5.

Proof of Lemma 2.5

Without loss of the generality we may assume \(u_{i,n}\ge 0\). First we claim that \(r_{i,n}/\gamma _{i,n}\rightarrow \infty \). If not, we have a constant \(C>0\) such that \(r_{i,n}/\gamma _{i,n}\le C\) for all \(n\in {\mathbb {N}}\). Then putting \(v_{n}(r)=u_{i,n}(r_{i,n}r)\) for \(r\in [r_{i-1,n}/r_{i,n},1]\), we get from (2.1) that

$$\begin{aligned} {\left\{ \begin{array}{ll} -v_n''-\frac{1}{r}v_n'=\lambda _n r_{i,n}^2 f_n(v_n),\ (-1)^{i-1}v_n>0\text { in }(r_{i-1,n},r_{i,n}),\\ v_n(1)=0=v_n'(\rho _{i,n}/r_{i,n}),\\ v_n(r_{i-1,n}/r_{i,n})=0\text { if }i\ge 2. \end{array}\right. } \end{aligned}$$

Then the above equation implies

$$\begin{aligned} -v_n''-\frac{1}{r}v_n'\le \lambda _n r_{i,n}^2f_n(\mu _{i,n})=\frac{1}{2\mu _{i,n}}\left( \frac{r_{i,n}}{\gamma _{i,n}}\right) ^2\le \frac{C^2}{2\mu _{i,n}}\rightarrow 0, \end{aligned}$$

uniformly on \([r_{i-1,n}/r_{i,n},1]\). It follows that \(v_n\rightarrow 0\) uniformly in \([r_{i-1,n}/r_{i,n},1]\). This contradicts our assumption (2.2). This proves the claim. In particular, we get \(\gamma _{i,n}\rightarrow 0\). Next, we claim \(\rho _{i,n}/r_{i,n}\rightarrow 0\). This is trivial for \(i=1\). Hence we assume \(i\ge 2\). Define \(v_n\) as above. It follows from our assumption (2.3) and Lemma 2.1 that there exist constants \(c,C>0\) such that

$$\begin{aligned} C\ge \int _{r_{i-1,n}/r_{i,n}}^{1} v_n'(r)^2rdr\ge \frac{\mu _{i,n}^2}{2\pi c^2}\left( \frac{\rho _{i,n}}{r_{i,n}}\right) . \end{aligned}$$

Then (2.2) shows the claim. In particular, we get \(\rho _{i,n}\rightarrow 0\) and \((r_{i,n}-\rho _{i,n})/\gamma _{i,n}\rightarrow \infty \) by the first claim. Next, by the definition of \(z_{i,n}\) and (2.8), we get that

$$\begin{aligned} 0\le -z_{i,n}''-\frac{1}{r+\frac{\rho _{i,n}}{\gamma _{i,n}}}z_{i,n}'\le 1 \text { on }\left[ \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}\right] . \end{aligned}$$

Then, for any \(r\in \left[ \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}\right] \), multiplying the equation by \(r+\frac{\rho _{i,n}}{\gamma _{i,n}}\) and integrating over (0, r) if \(r\ge 0\) and over (r, 0) if \(r<0\) give

$$\begin{aligned} {\left\{ \begin{array}{ll} 0\le -z_{i,n}'(r)\le \ \frac{\frac{r^2}{2}+\frac{\rho _{i,n}}{\gamma _{i,n}}r}{r+\frac{\rho _{i,n}}{\gamma _{i,n}}} \text { if }r\ge 0, \text { and }\\ 0\le z_{i,n}'(r)\le -\frac{\frac{r^2}{2}+\frac{\rho _{i,n}}{\gamma _{i,n}}r}{r+\frac{\rho _{i,n}}{\gamma _{i,n}}} \text { if }r<0. \end{array}\right. } \end{aligned}$$
(1.1)

Integrating this again, we get

$$\begin{aligned} \begin{aligned} 0\le -z_{i,n}(r)&\le \int _0^r\frac{\frac{r^2}{2}+\frac{\rho _{i,n}}{\gamma _{i,n}}r}{r+\frac{\rho _{i,n}}{\gamma _{i,n}}}dr\\&= {\left\{ \begin{array}{ll} \frac{r^2}{4}\text { if }i=1,\\ \frac{r^2}{4}+\left( \frac{\rho _{i,n}}{\gamma _{i,n}}\right) \frac{r}{2}-\frac{1}{2}\left( \frac{\rho _{i,n}}{\gamma _{i,n}}\right) ^2\log {\frac{\frac{\rho _{i,n}}{\gamma _{i,n}}+r}{\frac{\rho _{i,n}}{\gamma _{i,n}}}},\text { if }i\ge 2, \end{array}\right. } \end{aligned} \end{aligned}$$
(1.2)

for any \(r\in \left[ \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}\right] \). Then from (1.1) and (1.2), we get that \(z_{i,n}\) is uniformly bounded in \(C^1_{\text {loc}}((-l,\infty ))\) (\(C^1_{\text {loc}}([0,\infty ))\) if \(l=0\)). Furthermore, since (1.1) implies \(|z_{i,n}'(r)/(r+\rho _{i,n}/\gamma _{i,n})|\) is locally uniformly bounded in \((-l,\infty )\) (\([0,\infty )\) if \(l=0\)), using the equation in (2.8), we get that \(z_{i,n}\) is uniformly bounded in \(C^2_{\text {loc}}((-l,\infty ))\) (\(C^2_{\text {loc}}([0,\infty ))\) if \(l=0\)). Then it follows from the Ascoli-Arzelà theorem and the equation in (2.8) that there exists a function z such that \(z_{i,n}\rightarrow z\) in \(C^2_{\text {loc}}((-l,\infty ))\) (\(C^2_{\text {loc}}((0,\infty ))\cap C^1_{\text {loc}}([0,\infty ))\) if \(l=0\)).

Now our final aim is to show \(l=m<\infty \). This is clear if \(i=1\). Hence after this we assume \(i\ge 2\). We first claim \(l<\infty \). We suppose \(l=\infty \) on the contrary. Then \(m=\infty \). It follows from (2.8) that z satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} -z''=e^z\hbox { in }{\mathbb {R}},\\ z(0)=0=z'(0). \end{array}\right. } \end{aligned}$$

This implies \(z(r)=\log \frac{4e^{\sqrt{2}r}}{\left( 1+e^{\sqrt{2}r}\right) ^2}\) \((r\in {\mathbb {R}})\). Then by (2.3), there exits a constant \(C>0\) such that

$$\begin{aligned} C&\ge \lambda _n\int _{\rho _{i,n}}^{r_{i,n}}u_nf_n(u_n)rdr\nonumber \\&\ge \frac{1}{2} \int _{0}^{{\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}}}\left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) e^{z_{i,n}+\frac{z_{i,n}^2}{4\mu _{i,n}^2}+\alpha \mu _{i,n}^{\beta _n}\left\{ \left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) ^{\beta }-1\right\} }\left( r+\frac{\rho _{i,n}}{\gamma _{i,n}}\right) dr\nonumber \\&\ge \frac{1}{2} \frac{\rho _{i,n}}{\gamma _{i,n}}\int _{0}^{{\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}}}\left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) e^{z_{i,n}+\frac{z_{i,n}^2}{4\mu _{i,n}^2}+\alpha \mu _{i,n}^{\beta _n}\left\{ \left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) ^{\beta }-1\right\} }dr. \end{aligned}$$
(1.3)

Here the Fatou lemma implies

$$\begin{aligned} \liminf _{n\rightarrow \infty }\int _{0}^{{\frac{r_{i,n}-\rho _{i,n}}{\gamma _{i,n}}}}\left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) e^{z_{i,n}+\frac{z_{i,n}^2}{4\mu _{i,n}^2}+\alpha \mu _{i,n}^{\beta _n}\left\{ \left( \frac{z_{i,n}}{2\mu _{i,n}^2}+1\right) ^{\beta }-1\right\} }dr\ge \int _0^\infty e^zdr. \end{aligned}$$

Since the right hand side of the inequality above is positive value and \(m= \infty \), we get that the right hand side of (1.3) diverges to infinity which is a contradiction. This proves the claim. Finally we show \(l=m\). Let us assume \(l<m\) on the contrary. Then we claim that there exists a constant \(C>0\) such that

$$\begin{aligned} |z_{i,n}'(r)|\le C \text { for all }n\in {\mathbb {N}}\text { and }r\in \left[ \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},0\right] . \end{aligned}$$

In fact, if \(m=\infty \), the claim follows easily by the latter formula in (1.1). If \(m<\infty \), using (1.1) again we get a constant \(C>0\) such that

$$\begin{aligned} 0\le z_{i,n}'(r)\le \frac{C}{m-l+o(1)} \end{aligned}$$

uniformly for all \(r\in \left[ \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},0\right] \). This proves the claim. On the other hand, by the mean value theorem, we have a sequence \((\xi _n)\subset \left( \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}},0\right) \) such that

$$\begin{aligned} z_{i,n}'(\xi _n)=\frac{-z_{i,n}\left( \frac{r_{i-1,n}-\rho _{i,n}}{\gamma _{i,n}}\right) }{\frac{\rho _{i,n}-r_{i-1,n}}{\gamma _{i,n}}}=\frac{2\mu _{i,n}^2}{l+o(1)}\rightarrow \infty \end{aligned}$$

since \(l\in [0,\infty )\). This is a contradiction. We finish the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naimen, D. Concentration profile, energy, and weak limits of radial solutions to semilinear elliptic equations with Trudinger–Moser critical nonlinearities. Calc. Var. 60, 66 (2021). https://doi.org/10.1007/s00526-021-01951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01951-5

Mathematics Subject Classification

Navigation