Skip to main content
Log in

Study of Non-standard Neutrino Interactions in Future Coherent Elastic Neutrino-Nucleus Scattering Experiments

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Non-standard interactions (NSI) of the neutrino sector is studied in the framework of coherent elastic neutrino-nucleus scattering (CE\(\nu\)NS). Differential and total cross sections of the CE\(\nu\)NS process for several nuclei are presented for different scale of incoming neutrino energy. Behavior of form factor in accordance with the criteria of coherency process is also shown as a function of momentum transfer. Several benchmarks were implemented according to the proposed advancement of CE\(\nu\)NS experiments. Using recently analyzed bound, we forecast that the NSI cross section spectrum is larger than the standard model (SM) ones and increased for heavier nuclei. Prediction of the NSI bounds is also given in the parameter space of the new interaction strengths by utilizing the deviation of NSI and SM spectrum ratio. All possibilities of non-universal flavor conserving (FC) and flavor violating (FV) process are considered as neutrino interact with the quark constituent of nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.Z. Freedman, Phys. Rev. D 9, 1389 (1974). https://doi.org/10.1103/PhysRevD.9.1389

  2. K. Scholberg, Phys. Rev. D 73, 033005 (2006). https://doi.org/10.1103/PhysRevD.73.033005

  3. D. Akimov et al., Science 357(6356), 1123 (2017). https://doi.org/10.1126/science.aao0990

  4. D. Akimov et al., Phys. Rev. Lett. 126, 012002 (2021). https://doi.org/10.1103/PhysRevLett.126.012002

  5. S. Kerman et al., Phys. Rev. D 93(11), 113006 (2016). https://doi.org/10.1103/PhysRevD.93.113006

  6. D. Akimov, et al., arXiv: 1509.08702 (2015). https://arxiv.org/abs/1509.08702

  7. A. Aguilar-Arevalo et al., Phys. Rev. D 100(9), 092005 (2019). https://doi.org/10.1103/PhysRevD.100.092005

  8. H. Bonet, et al., Phys. Rev. Lett. 126, 041804 (2021). https://doi.org/10.1103/PhysRevLett.126.041804

  9. H.T. Wong, Nucl. Phys. A 844, 229C (2010). https://doi.org/10.1016/j.nuclphysa.2010.05.040

  10. C.J. Horowitz, K. Coakley, D. McKinsey, Phys. Rev. D 68, 023005 (2003). https://doi.org/10.1103/PhysRevD.68.023005

  11. D.Z. Freedman, D.N. Schramm, D.L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27, 167 (1977). https://doi.org/10.1146/annurev.ns.27.120177.001123

  12. D. Papoulias et al., Phys. Let. B 800, 013004 (2020). https://doi.org/10.1016/j.physletb.2019.135133

  13. C. Giunti, A. Studenikin, Rev. Mod. Phys. 87, 531 (2015). https://doi.org/10.1103/RevModPhys.87.531

  14. Y. Farzan, M. Lindner, W. Rodejohann, X.J. Xu, JHEP 05, 066 (2018). https://doi.org/10.1007/JHEP05(2018)066

  15. M. Lindner, W. Rodejohann, X.J. Xu, JHEP 03, 097 (2017). https://doi.org/10.1007/JHEP03(2017)097

  16. A. Anderson et al., Phys. Rev. D 86, 013004 (2012). https://doi.org/10.1103/PhysRevD.86.013004

  17. D.G. Cerdeño et al., JHEP 05, 118 (2016). 048. [Erratum: JHEP 09, 048 (2016)] https://doi.org/10.1007/JHEP09

  18. S. Davidson, C. Pena-Garay, N. Rius, A. Santamaria, JHEP 03, 011 (2003). https://doi.org/10.1088/1126-6708/2003/03/011

  19. O. Miranda, H. Nunokawa, New J. Phys. 17(9), 095002 (2015). https://doi.org/10.1088/1367-2630/17/9/095002

  20. Z. Berezhiani, A. Rossi, Phys. Lett. B 535, 207 (2002). https://doi.org/10.1016/S0370-2693(02)01767-7

  21. Y. Farzan, I.M. Shoemaker, JHEP 07, 033 (2016). https://doi.org/10.1007/JHEP07(2016)033

  22. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

  23. S. Klein, J. Nystrand, Phys. Rev. C 60, 014903 (1999). https://doi.org/10.1103/PhysRevC.60.014903

  24. I. Bischer, W. Rodejohann, Nucl. Phys. B 947, 114746 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114746

  25. C. Giunti, Phys. Rev. D 101, 035039 (2020). https://doi.org/10.1103/PhysRevD.101.035039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Demirci.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustamin, M.F., Demirci, M. Study of Non-standard Neutrino Interactions in Future Coherent Elastic Neutrino-Nucleus Scattering Experiments. Braz J Phys 51, 813–819 (2021). https://doi.org/10.1007/s13538-021-00867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00867-x

Keywords

Navigation