Skip to main content
Log in

Research of Water Environment Capacity Allocation in Liaoning Province Based on the Analytic Network Process

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Factors like intensive industrial and socio-economic development can lead to the deterioration of the water environment. At the same time, economic, social, and population sustainability rely on good water conditions in the river. Therefore, it is important to calculate the water environment capacity and allocate it accordingly. Our research selects the economic, social, and environmental factors to construct a water environment capacity allocation model using the analytic network process. Allocation results are as follows: there are Liaozhong County, Tiexi District, and Liaoyang County, where the water environment capacity allocation value exceeds 10 000 t/a at 18 336.25, 12 743.19, and 10 585.53 t/a, respectively. Dashiqiao City’s water environmental capacity allocation is the least, at only 78.30 t/a. In the paper, the goal to allocate water environment capacity from the three major rivers to the administrative area is achieved in Liaoning Province, thus making the allocation result more comprehensive and fairer. It provides a scientific basis for controlling the water environment in Liaoning Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Burn, D.H. and Lence, B.J., Comparison of optimization formulations for waste-load allocations, J. Environ. Eng., 1992, vol. 118, no. 4, pp. 597–612.

    Article  Google Scholar 

  2. Cao, X.H., The Dynamic Water Environment Capacity and Total Pollution Control Strategy in Mudanjiang section, Harbin Institute of Technology, 2015.

    Google Scholar 

  3. Chadderton, R.A. and Kropp, I.S., An evaluation of eight wasteload allocation methods, JAWRA J. Am. Water Resour. Assoc., 1985, vol. 21, no. 5, pp. 833–839.

    Article  Google Scholar 

  4. Chadderton, R.A., Miller, A.C., and McDonnell, A.J., Analysis of waste load allocation procedures, JAWRA J. Am. Water Resour. Assoc., 2010, vol. 17, no. 5, pp. 760–766.

    Article  Google Scholar 

  5. Chen, D.J., Lv, J., and Shen, Y.N., Water environment Gini coefficient method for multi-objective equitable allocation of interregional water environmental capacity, Environ. Pollut. Prevent., 2010, vol. 32, no. 1, pp. 88–91.

    Google Scholar 

  6. Dong, Z.F., Research on the Total Amount Allocation Methods of the Water Pollutant among Different Provinces: Taking COD Allocation as a Case, Nanjing University, 2010.

    Google Scholar 

  7. Fu, Z.H., Xie, Y.L., Li, W., and Guo, H., An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China, Energy, 2017, vol. 126, pp. 165–178.

    Article  Google Scholar 

  8. Fujiwara, O., Gnanendran, S.K., and Ohgaki, S., River quality management under stochastic streamflow, J. Environ. Eng., 2014, vol. 112, no. 2, pp. 185–198.

    Article  Google Scholar 

  9. Hao, X.D., The Application of Information Entropy in Total Waste Load Allocation for Surface-Water and Control Policy, Tianjin Univ., 2010.

    Google Scholar 

  10. Jiao, F. and Gu, F.Y., Distribution of water environmental capacity of nitrogen ammonium in Suzhou Section of Jinghang Canal, Environ. Sci. Technol., 2011, vol. 34, no. 11, pp. 158–163.

    Google Scholar 

  11. Karamouz, M., Mahjouring, N., and Kerachian, R., River water quality zoning: A case study of Karoon and Dez river system, Iran. J. Environ. Health Sci. Eng., 2004, vol. 1, no. 2, pp. 16–27.

    Google Scholar 

  12. Lin, W., Fu, G.W., and Liu, C.H., Study on allocating permissible pollutants discharge based on axioms system, Environ. Sci., 1996, vol. 17 no. 3, pp. 35–37.

    Google Scholar 

  13. Liu, B.C., Study on Water Environment Carrying Capacity in Mudanjiang River Basin, Harbin Inst. Technol., 2006.

    Google Scholar 

  14. Luo, P.P., Zhou, M.M., Deng, H.Z., Lyu, J.Q., and Cao, W.Q., Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change, Sci. Total Environ., 2018, vol. 615, pp. 1355–1363.

    Article  Google Scholar 

  15. Mahjouri, N. and Bizhani-Manzar, M., Waste load allocation in rivers using fallback bargaining, Water Resour. Manag., 2013, vol. 27, no. 7, pp. 2125–2136.

    Article  Google Scholar 

  16. Qin, D.L., Wei, A.L., Lu, S.Y., Luo, Y.P., Liao, Y.H., Yi, M., and Song, B.B., Total water pollutant load allocation in Dongting Lake area based on the Environmental Gini Coefficient Method, Res. Environ. Sci., 2013, vol. 42, no. 42, pp. 209–219.

    Google Scholar 

  17. Saheed, O.Y. and Uta, W., Institutional dynamics in national strategy development pp. a case study of the capacity development strategy of Ganda’s water and environment sector, Water Policy, 2016, vol. 18, no. 5, pp. 1174–1193.

    Article  Google Scholar 

  18. Shan, B.Q., Wang, C., Li, X.Y., Li, W.Z., and Zhang, H., Method for river pollution control plan based on water quality target management and the case study, J. Environ. Sci., 2015, vol. 35, no. 8, pp. 2314–2323.

    Google Scholar 

  19. Thomann, R.V. and Sobel, M.J., Estuarine water quality management and forecasting, J. Sanit. Eng. Div., 1964, vol. 90, no. 5, pp. 9–38.

    Article  Google Scholar 

  20. Wang, Y.L., Study on the multi-purposes combination planning model of regional water pollution control, Acta Sci. Circumstantiae, 2002, vol. 22, no. 1, pp. 107–110.

    Google Scholar 

  21. Yue, Q., Hou, L.M., Wang, T., Wang, L.S., Zhu, Y., and Cheng, X.L., Optimization of industrial structure based on water environmental carrying capacity in Tieling City, Water Sci. Technol., 2015, vol. 71, no. 8, pp. 1255–1262.

    Article  Google Scholar 

  22. Zhang, T.Z., The economic principle of total water pollutant emission control management, Environ. Sci., 1990, vol. 11, no. 6, pp. 2–6.

    Google Scholar 

  23. Zeng, W.H., Wu, B., and Chai, Y., Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions, Front. Environ. Sci. Eng., 2016, vol. 10, no. 1, pp. 114–128.

    Article  Google Scholar 

  24. Zhou, G., Lei, K., Fu, G., and Zhang, S., Multi-objective river waste load allocation model based on rationality evaluation index, J. Applied Foundation and Eng. Sci., 2015, no. 3, pp. 499–511.

Download references

FUNDING

This research was supported by the Fundamental Research Funds for the Central Universities of China (no. 182 502 045) and the National Natural Science Foundation of China (71 373 003).

This manuscript has been edited by professional editors at Editage, a division of Cactus Communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yue.

Ethics declarations

All the authors declare that they have no conflicts of interest. The authors confirm that this is an original submission which has not been published previously or submitted to any other journal.

APPENDIX

APPENDIX

Basic data of districts and counties in Liaohe River

District and county

 Index

GDP per capita,

yuan/ person

urban residents’

income level, yuan

the proportion

of the first industry

output to GDP, %

the proportion

of environmental

protection investment

to GDP, %

population

density, 104/km2

social education account

for total financial

expenditure

treatment rate

of sewage treatment plant

the industrial wastewater

discharge volume

per ten thousand

values, t/104 yuan

the industrial fresh

water consumption

per ten thousand

values, m3/104 yuan

the effective

irrigation area, ha

the COD discharge

volume per ten thousand

values, t/104 yuan

Kangping County

  62 632.71

22 924

     18.62

9.92

0.0079

    18.86%

0.90

2.0717

246.35

     9329

    0.0047

Changtu County

  21 880.32

21 528

     37.63

3.36

0.0122

    66.35%

0.90

0.9891

1.18

    71 950

    0.0143

Faku County

  77 689.65

21 352

     14.99

6.32

0.0096

    19.78%

0.90

0.1113

5.07

    29 913

    0.0082

Tieling County

  38 672.30

23 430

     24.48

4.84

0.0095

    15.60%

0.85

0.7867

611.13

    32 077

    0.0182

Kaiyuan City

  31 255.19

24 244

     27.62

4.19

0.0107

    12.47%

0.93

0.1460

0.18

    50 400

    0.0252

Shenbei Area

101 484.22

28 200

7.06

4.54

0.0275

    10.81%

0.96

0.0352

0.06

    14 510

    0.0044

Xinmin City

  67 554.60

24 970

     18.10

4.45

0.0109

    24.90%

1.00

0.0572

0.07

    57 166

    0.0138

Diaobingshan City

  44 174.52

23 870

5.36

6.64

0.0514

    14.55%

0.90

1.4803

23.95

     3666

    0.0098

Zhangwu County

  28 456.57

19 466

     44.68

5.32

0.0062

    14.44%

0.99

1.0444

1.49

    34 349

    0.0193

Liaozhong County

  93 248.92

27 650

     18.93

16.71

0.0144

    25.54%

1.00

0.8146

1.05

    43 386

    0.0064

Taian County

  63 914.11

24 054

     20.04

1.19

0.0151

     9.88%

0.95

2.1907

5.05

    26 170

    0.0064

Panshan County

  52 749.06

26 090

     30.38

1.83

0.0089

     7.69%

0.78

4.1364

0.56

    45 151

    0.0554

Dawa County

  62 491.92

29 150

     20.94

1.78

0.0185

     5.25%

0.99

0.0856

0.13

    54 753

    0.0098

Basic data of districts and counties in Hunhe River

District

and county

Index

GDP per capita,

yuan/person

urban residents'

income level, yuan

the proportion

of the first industry

output to GDP, %

the proportion

of environmental

protection investment

to GDP, %

population

density, 104/km2

social education account

for total financial

expenditure

treatment rate

of sewage treatment plant

the industrial wastewater

discharge volume

per ten thousand

values, t/104 yuan

the industrial fresh

water consumption

per ten thousand

values, m3/104 yuan

the effective

irrigation area, ha

the COD discharge

volume per ten thousand

values, t/104 yuan

Xinbin County

40 648.6

10 255

20.86

5.45

0.0039

11.07%

0.95

0.0825

2.52

7572

0.0052

Fushun County

75 733.7

11 542

19.23

7.61

0.0028

10.50%

0.82

0.0315

15.47

3490

0.0045

Dongzhou District

64 514.4

25 452

4.39

28.64

0.0105

12.00%

0.92

58.3829

4735.99

0

0.0306

Shunchen City

40 042.4

27 925

2.06

3.88

0.0863

–

0.92

0.2192

190.18

6271

0.0059

Xinfu District

55 926.3

23 170

0.30

25.77

0.0910

11.76%

0.95

1.3913

37.10

0

0.0213

Wanghua District

7524.3

26 321

3.66

32.56

0.0720

13.40%

0.92

22.4403

3300.65

0

0.0394

Dongling District

100 698.2

32 100

1.48

1.56

0.0262

7.78%

0.99

0.7647

1.20

1569

0.0042

Dadongqu District

65 851.8

31 030

0.00

7.81

0.5075

–

0.99

3.7483

0.00

0

0.0044

Shenhe District

98 522.7

40 987

0.00

6.66

0.9174

–

0.99

0.3557

0.00

0

0.0037

Heping District

100 544.7

40 205

0.04

6.53

0.7837

18.20%

0.99

0.1345

0.21

0

0.0039

Tiexi District

92 130.0

38 124

0.09

7.69

0.1161

–

0.98

7.7056

117.75

0

0.0060

Huanggu District

44 487.3

30 013

11.59

13.83

0.4832

–

0.99

1.2717

9.92

0

0.0091

Sujiatun District

68 333.4

33 251

9.22

5.97

0.0343

17.42%

0.70

1.6423

23.62

9473

0.0060

Yuhong District

70 686.1

32 330

2.43

4.22

0.0542

4.77%

0.82

0.4837

3.00

14 479

0.0036

Basic data of districts and counties in Taizihe River

District

and county

Index

GDP per capita,

yuan/person

urban residents'

income level, yuan

the proportion

of the first industry

output to GDP, %

the proportion

of environmental

protection investment

to GDP

population

density, 104/km2

social education account

for total financial

expenditure, %

treatment rate

of sewage treatment plant

the industrial wastewater

discharge volume

per ten thousand values,

t/104 yuan

the industrial fresh

water consumption

per ten thousand values,

m3/104 yuan

the effective

irrigation area, ha

the COD discharge

volume per ten thousand

values, t/104 yuan

Benxi County

61 361.28

23 464

12.20

0.0283

0.0049

17.20

0.99

0.43

11.17

1970

0.0054

Mingshan District

38 870.39

28 849

4.41

0.0315

0.0570

14.86

0.90

1.44

36.35

1101

0.0091

Fengcheng City

48 145.08

27 210

10.82

0.0419

0.0059

22.73

0.90

1.36

12.10

9156

0.0038

Xihu District

85 863.30

24 943

2.20

0.0280

0.0368

0.44

0.95

1.28

32.28

1149

0.0054

Pingshan District

64 222.72

28 759

0.60

0.0224

0.1107

10.85

0.90

4.86

952.34

1128

0.0061

Nanfen District

76 882.59

24 046

6.22

0.0784

0.0077

15.69

0.85

1.53

335.01

641

0.0133

Gongchangling District

72 872.53

24 067

3.32

0.0328

0.0175

12.27

0.96

37.09

166.38

99

0.0088

Wensheng District

42 269.76

20 000

7.39

0.0354

0.1975

5.98

0.16

7.79

23.12

1850

0.0081

Hongwei District

36 500.76

23 480

1.25

0.0118

0.1158

–

0.99

786.21

20 629.25

229

0.0992

Taizihe District

64 627.71

19 500

12.25

0.0376

0.0620

10.35

0.99

0.65

26.69

7174

0.0102

Qianshan District

64 627.71

44 902

7.56

0.0371

0.0124

10.87

0.95

8.78

630.69

5860

0.0172

Tiedong District

67 958.02

36 074

1.32

0.0079

1.3813

–

0.95

0.37

0.62

0

0.0036

Dashiqiao City

60 064.39

28 872

10.86

0.0072

0.0250

12.41

0.87

1.53

4.08

34 167

0.0200

Dengta City

58 519.76

26 299

9.79

0.0081

0.0194

9.34

0.99

1.05

80.49

25 546

0.0093

Haicheng City

70 002.32

26 390

5.41

0.0034

0.0246

13.44

0.95

2.34

5.42

31 280

0.0068

Liaoyang County

52 099.52

11 765

9.80

0.0084

0.0101

14.66

0.90

0.43

5.10

22 872

0.0055

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang Yue, Zhang, Y., Li, C. et al. Research of Water Environment Capacity Allocation in Liaoning Province Based on the Analytic Network Process. Water Resour 48, 310–323 (2021). https://doi.org/10.1134/S0097807821020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821020111

Keywords:

Navigation