Skip to main content
Log in

Trade-off for Heterogeneous Distributed Storage Systems between Storage and Repair Cost

  • INFORMATION THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider heterogeneous distributed storage systems (DSSs) having flexible reconstruction degree, where each node in the system has nonuniform repair bandwidth and nonuniform storage capacity. In particular, a data collector can reconstruct the file using some \(k\) nodes in the system and, for a node failure, the system can be repaired by some set of active nodes. Using min-cut bound, we investigate the fundamental trade-off between storage and repair costs for our model of the heterogeneous DSS. Further, the problem is formulated as bi-objective optimization linear programing problem for various heterogeneous DSSs. For some DSSs, it is shown that the calculated min-cut bound is tight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Amazon Elastic Compute Cloud (Amazon EC2). Web Service, Jan. 2013. Available at http://aws.amazon.com/ec2/.

  2. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., and Yekhanin, S., Erasure Coding in Windows Azure Storage, in Proc. 2012 USENIX Annu. Technical Conf. (USENIX ATC’12), Boston, MA, June 13–15, 2012, pp. 15–26.

  3. Microsoft SkyDrive Live. Online Storage Service, Jan. 2013. Available at https://skydrive.live.com/.

  4. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R., Chen, S., and Borthakur, D., XORing Elephants: Novel Erasure Codes for Big Data, Proc. VLDB Endow., 2013, vol. 6, no. 5, pp. 325–336. https://doi.org/10.14778/2535573.2488339

    Article  Google Scholar 

  5. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., and Ramchandran, K., Network Coding for Distributed Storage Systems, in Proc. 26th IEEE Annu. Joint Conf. on Computer Communications (INFOCOM’2007), Anchorage, AK, USA, May 6–12, 2007, pp. 2000–2008. https://doi.org/10.1109/INFCOM.2007.232

  6. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., and Ramchandran, K., Network Coding for Distributed Storage Systems, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 9, pp. 4539–4551. https://doi.org/10.1109/TIT.2010.2054295

    Article  Google Scholar 

  7. Wu, Y., Dimakis, A., and Ramchandran, K., Deterministic Regenerating Codes for Distributed Storage, in Proc. 45th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, Sept. 26–28, 2007, vol. 1, pp. 242–249.

  8. Wu, Y., Existence and Construction of Capacity-Achieving Network Codes for Distributed Storage, in Proc. 2009 IEEE Int. Symp. on Information Theory (ISIT’2009), Seoul, Korea, June 28 – July 3, 2009, pp. 1150–1154. https://doi.org/10.1109/ISIT.2009.5206008

  9. Wu, Y., Existence and Construction of Capacity-Achieving Network Codes for Distributed Storage, IEEE J. Sel. Areas Commun., 2010, vol. 28, no. 2, pp. 277–288. https://doi.org/10.1109/JSAC.2010.100217

    Article  Google Scholar 

  10. Goparaju, S., El Rouayheb, S., and Calderbank, R., New Codes and Inner Bounds for Exact Repair in Distributed Storage Systems in Proc. 2014 IEEE Int. Symp. on Information Theory (ISIT’2014), Honolulu, HI, USA, June 29 – July 4, 2014, pp. 1036–1040. https://doi.org/10.1109/ISIT.2014.6874990

  11. Shah, N.B., Rashmi, K.V., and Kumar, P.V., A Flexible Class of Regenerating Codes for Distributed Storage, in Proc. 2010 IEEE Int. Symp. on Information Theory (ISIT’2010), Austin, TX, USA, June 13–18, 2010, pp. 1943–1947. https://doi.org/10.1109/ISIT.2010.5513353

  12. Dimakis, A.G., Ramchandran, K.,Wu, Y., and Suh, C., A Survey on Network Codes for Distributed Storage, Proc. IEEE, 2011, vol. 99, no. 3, pp. 476–489. https://doi.org/10.1109/JPROC.2010.2096170

    Article  Google Scholar 

  13. Prakash, N. and Krishnan, M.N., The Storage-Repair-Bandwidth Trade-off of Exact Repair Linear Regenerating Codes for the Case \(d = k = n - 1\), https://arXiv.org/abs/1501.03983v2 [cs.IT], 2015.

  14. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B., OceanStore: An Architecture for Global-Scale Persistent Storage, ACM SIGPLAN Notices, 2000, vol. 35, no. 11, pp. 190–201. https://doi.org/10.1145/356989.357007

    Article  Google Scholar 

  15. Bianchi, G. and Melen, R., Performance and Dimensioning of a Hierarchical Video Storage Network for Interactive Video Services, Eur. Trans. Telecommun., 1996, vol. 7, no. 4, pp. 349–358. https://doi.org/10.1002/ett.4460070407

    Article  Google Scholar 

  16. Pawar, S., El Rouayheb, S., Zhang, H., Lee, K., and Ramchandran, K., Codes for a Distributed Caching Based Video-on-Demand System, in Conf. Rec. 46th Asilomar Conf. on Signals, Systems and Computers (ASILOMAR’2011), Pacific Grove, CA, USA, Nov. 6–9, 2011, pp. 1783–1787. https://doi.org/10.1109/ACSSC.2011.6190328

  17. Ntranos, V., Caire, G., and Dimakis, A.G., Allocations for Heterogenous Distributed Storage, https://arXiv.org/abs/1202.1596 [cs.IT], 2012.

  18. Li, Z., Ho, T., Leong, D., and Yao, H., Distributed Storage Allocation for Heterogeneous Systems, in Proc. 51st Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, Oct. 2–4, 2013, pp. 320–326. https://doi.org/10.1109/TIT.2012.2191135

  19. Leong, D., Dimakis, A.G., and Ho, T., Distributed Storage Allocations, IEEE Trans. Inform. Theory, 2012, vol. 58, no. 7, pp. 4733–4752. https://doi.org/10.1109/TIT.2012.2191135

    Article  MathSciNet  Google Scholar 

  20. Gerami, M., Xiao, M., and Skoglund, M., Optimal-Cost Repair in Multi-hop Distributed Storage Systems, in Proc. 2011 IEEE Int. Symp. on Information Theory (ISIT’2011), St. Petersburg, Russia, July 31 – Aug. 5, 2011, pp. 1437–1441. https://doi.org/10.1109/ISIT.2011.6033777

  21. Akhlaghi, S., Kiani, A., and Ghanavati, M.R., Cost-Bandwidth Tradeoff in Distributed Storage Systems, Comput. Commun., 2010, vol. 33, no. 17, pp. 2105–2115. https://doi.org/10.1016/j.comcom.2010.07.022

    Article  Google Scholar 

  22. Akhlaghi, S., Kiani, A., and Ghanavati, M.R., A Fundamental Trade-off between the Download Cost and Repair Bandwidth in Distributed Storage Systems, in Proc. 2010 IEEE Int. Symp. on Network Coding (NetCod’2010), Toronto, ON, Canada, June 9–11, 2010, pp. 97–102. https://doi.org/10.1109/NETCOD.2010.5487685

  23. Yu, Q., Shum, K.W., and Sung, C.W., Minimization of Storage Cost in Distributed Storage Systems with Repair Consideration, in Proc. 2011 IEEE Global Telecommunications Conf. (GLOBECOM’2011), Houston, TX, USA, Dec. 5–9, 2011, pp. 2931–2935. https://doi.org/10.1109/GLOCOM.2011.6133729

  24. Pernas, J., Yuen, C., Gastón, B., and Pujol, J., Non-homogeneous Two-Rack Model for Distributed Storage Systems, in Proc. 2013 IEEE Int. Symp. on Information Theory (ISIT’2013), Istanbul, Turkey, July 7–12, 2013, pp. 1237–1241. https://doi.org/10.1109/ISIT.2013.6620424

  25. Gastón, B., Pujol, J., and Villanueva, M., A Realistic Distributed Storage Systems That Minimizes Data Storage and Repair Bandwidth, in Proc. 2006 Data Compression Conf. (DCC’2006), Snowbird, UT, USA, Mar. 20–22, 2013, p. 491. https://doi.org/10.1109/DCC.2013.72

  26. Ernvall, T., El Rouayheb, S., Hollanti, C., and Poor, H.V., Capacity and Security of Heterogeneous Distributed Storage Systems, in Proc. 2013 IEEE Int. Symp. on Information Theory (ISIT’2013), Istanbul, Turkey, July 7–12, 2013, pp. 1247–1251. https://doi.org/10.1109/ISIT.2013.6620426

  27. Benerjee, K.G. and Gupta, M.K., On Heterogeneous Regenerating Codes and Capacity of Distributed Storage Systems, https://arXiv.org/abs/1402.3801 [cs.IT], 2014.

  28. Yu, Q., Shum, K.W., and Sung, C.W., Tradeoff between Storage Cost and Repair Cost in Heterogeneous Distributed Storage Systems, Trans. Emerg. Telecommun. Technol., 2015, vol. 26, no. 10, pp. 1201–1211. https://doi.org/10.1002/ett.2887

    Article  Google Scholar 

  29. Kiani, A. and Akhlaghi, S., Selective Regenerating Codes, IEEE Commun. Lett., 2011, vol. 15, no. 8, pp. 854–856. https://doi.org/10.1109/LCOMM.2011.061611.102271

    Article  Google Scholar 

  30. Senthoor, K., Sasidharan, B., and Kumar, P.V., Improved Layered Regenerating Codes Characterizing the Exact-Repair Storage-Repair Bandwidth Tradeoff for Certain Parameter Sets, in Proc. 2015 IEEE Information Theory Workshop (ITW’2015), Jerusalem, Israel, Apr. 26 – May 1, 2015, pp. 224–228. https://doi.org/10.1109/ITW.2015.7133121

  31. Sasidharan, B., Senthoor, K., and Kumar, P.V., An Improved Outer Bound on the Storage-Repair-Bandwidth Tradeoff of Exact-Repair Regenerating Codes, in Proc. 2014 IEEE Int. Symp. on Information Theory (ISIT’2014), Honolulu, HI, USA, June 29 – July 4, 2014, pp. 2430–2434. https://doi.org/10.1109/ISIT.2014.6875270

  32. Sasidaran, B. and Kumar, P.V., On the Interior Points of the Storage-Repair Bandwidth Tradeoff of Regenerating Codes, in Proc. 51st Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, Oct. 2–4, 2013, pp. 788–795. https://doi.org/10.1109/Allerton.2013.6736605

  33. Duursma, I.M., Outer Bounds for Exact Repair Codes, https://arXiv.org/abs/1406.4852 [cs.IT], 2014.

  34. Ahmad, I. and Wang, C.C., When and by How Much Can Helper Node Selection Improve Regenerating Codes?, in Proc. 52nd Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, Sept. 30 – Oct. 3, 2014, pp. 459–466. https://doi.org/10.1109/ALLERTON.2014.7028491

  35. Ahlswede, R., Cai, N., Li, S.-Y.R., and Yeung, R.W., Network Information Flow, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 4, pp. 1204–1216. https://doi.org/10.1109/18.850663

    Article  Google Scholar 

  36. Elias, P., Feinstein, A., and Shannon, C., A Note on the Maximum Flow Through a Network, IEEE Trans. Inform. Theory,1956, vol. 2, no. 4, pp. 117–119. https://doi.org/10.1109/TIT.1956.1056816

    Article  Google Scholar 

  37. Ford, L.R., Jr. and Fulkerson, D.R., Maximal Flow through a Network, Canad. J. Math., 1956, vol. 8, pp. 399–404. https://doi.org/10.4153/CJM-1956-045-5

    Article  MathSciNet  Google Scholar 

  38. lp_solve (mathematical optimization software). A Mixed Integer Linear Programming (MILP) Solver. Version 5.5.2.0, 2011. Available at http://lpsolve.sourceforge.net/5.5/.

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading of the manuscript, which has improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Gupta.

Additional information

Translated from Problemy Peredachi Informatsii, 2021, Vol. 57, No. 1, pp. 40–63 https://doi.org/10.31857/S0555292321010022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benerjee, K.G., Gupta, M.K. Trade-off for Heterogeneous Distributed Storage Systems between Storage and Repair Cost. Probl Inf Transm 57, 33–53 (2021). https://doi.org/10.1134/S0032946021010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946021010026

keywords

Navigation