Skip to main content
Log in

Positivity of Valuations on Convex Bodies and Invariant Valuations by Linear Actions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we endow the space of continuous translation invariant valuations on convex sets generated by mixed volumes coupled with a suitable Radon measure on tuples of convex bodies with two appropriate norms. This enables us to construct a continuous extension of the convolution operator on smooth valuations to non-smooth valuations, which are in the completion of the spaces of valuations with respect to these norms. The novelty of our approach lies in the fact that our proof does not rely on the general theory of wave fronts, but on geometric inequalities deduced from optimal transport methods. We apply this result to prove a variant of Minkowski’s existence theorem, and generalize a theorem of Favre–Wulcan and Lin in complex dynamics over toric varieties by studying the linear actions on the Banach spaces of valuations and by studying their corresponding eigenspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the positivity of forms, we refer the reader to [25, Chapter 3] and [23, Section 1]. In [23, Definition 1.4], “Hermitian positive” is called semipositive.

  2. It was realized in [39] that the same ideas had previously appeared in the classical work of Alexandrov [6].

  3. This can also be obtained by applying Theorem 2.9.

References

  1. Abardia, J., Bernig, A.: Projection bodies in complex vector spaces. Adv. Math. 227(2), 830–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alesker, S., Bernig, A.: The product on smooth and generalized valuations. Am. J. Math. 134(2), 507–560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alesker, S., Bernig, A.: Convolution of valuations on manifolds. J. Differ. Geom. 107(2), 203–240 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Alesker, S., Dar, S., Milman, V.: A remarkable measure preserving diffeomorphism between two convex bodies in \(\mathbb{R}^n\). Geom. Dedicata 74(2), 201–212 (1999). (English)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alesker, S., Fu, J.H.G.: Integral geometry and valuations. In: Gallego, E., Solanes, G. (eds.) Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel, 2014, Lectures from the Advanced Course on Integral Geometry and Valuation Theory held at the Centre de Recerca Matemàtica (CRM), Barcelona, 6–10 Sept (2010)

  6. Alexandrov, A.D.: On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sbornik 3(45), 27–46 (1938). (Russian)

    Google Scholar 

  7. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alesker, S.: Hard lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations. J. Differ. Geom. 63(1), 63–95 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14(1), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alesker, S.: Theory of valuations on manifolds: a survey. Geom. Funct. Anal. 17(4), 1321–1341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alesker, S.: A Fourier-type transform on translation-invariant valuations on convex sets. Israel J. Math. 181, 189–294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernig, A., Bröcker, L.: Valuations on manifolds and rumin cohomology. J. Differ. Geom. 75(3), 433–457 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bernig, A.: Algebraic integral geometry. In: Global Differential Geometry, pp. 107–145. Springer (2012)

  14. Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedicata. 123, 153–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. (2) 173(2), 907–945 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boucksom, S., Favre, C., Jonsson, M.: Degree growth of meromorphic surface maps. Duke Math. J. 141(3), 519–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bernig, A., Hug, D.: Integral geometry and algebraic structures for tensor valuations. In: Tensor Valuations and their Applications in Stochastic Geometry and Imaging, Lecture Notes in Math., vol. 2177, pp. 79–109. Springer, Cham (2017)

  18. Bourgain, J., Lindenstrauss, J.: Projection Bodies, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., vol. 1317, pp. 250–270. Springer, Berlin (1988)

  19. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Busemann, H.: Volume in terms of concurrent cross-sections. Pac. J. Math. 3, 1–12 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Casselman, W.: Canonical extensions of Harish-Chandra modules to representations of \(G\). Can. J. Math. 41(3), 385–438 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dang, N.-B.: Degrees of iterates of rational maps on normal projective varieties. Proc. London Math. Soc. 121, 1268–1310 (2020). https://doi.org/10.1112/plms.12366

  23. Debarre, O., Ein, L., Lazarsfeld, R., Voisin, C.: Pseudoeffective and nef classes on abelian varieties. Compos. Math. 147(06), 1793–1818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demailly, J-P: Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, vol. 1. International Press, Somerville, MA; Higher Education Press, Beijing (2012)

  25. Demailly, J.-P.: Complex analytic and differential geometry. online book, available at www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf, Institut Fourier, Grenoble (2012)

  26. Dinh, T.-C., Nguyên, V.-A.: Comparison of dynamical degrees for semi-conjugate meromorphic maps. Comment. Math. Helv. 86(4), 817–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dinh, T.-C., Sibony, N.: Regularization of currents and entropy. Annales scientifiques de l’École normale supérieure 37(6), 959–971 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dinh, T.-C., Sibony, N.: Green currents for holomorphic automorphisms of compact Kähler manifolds. J. Am. Math. Soc. 18(2), 291–312 (2005)

    Article  MATH  Google Scholar 

  29. Dinh, T.-C., Sibony, N.: Une borne supérieure pour l’entropie topologique d’une application rationnelle. Ann. Math. 1637–1644 (2005)

  30. Favre, C., Wulcan, E.: Degree growth of monomial maps and McMullen’s polytope algebra. Indiana Univ. Math. J. 61(2), 493–524 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gromov, M.: Convex sets and Kähler manifolds. In: Tricerri, F. (ed.) Advances in Differential Geometry and Topology, pp. 1–38. Singapore, World Scientific (1990)

    Google Scholar 

  32. Hartfiel, J.: Dense sets of diagonalizable matrices. Proc. Am. Math. Soc. 123(6), 1669–1672 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haberl, C., Parapatits, L.: Valuations and surface area measures. J. Reine Angew. Math. 687, 225–245 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Lin, J.-L.: Algebraic stability and degree growth of monomial maps. Math. Z. 271(1–2), 293–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ludwig, M.: Projection bodies and valuations. Adv. Math. 172(2), 158–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lutwak, E.: Rotation means of projections. Israel J. Math. 58(2), 161–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lutwak, E.: Inequalities for mixed projection bodies. Trans. Am. Math. Soc. 339(2), 901–916 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lehmann, B., Xiao, J.: Convexity and Zariski decomposition structure. Geom. Funct. Anal. 26(4), 1135–1189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lehmann, B., Xiao, J.: Correspondences between convex geometry and complex geometry. Épijournal Geom. Algébrique 1, Art. 6, 29 (2017)

  40. McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995). (English)

    Article  MathSciNet  MATH  Google Scholar 

  41. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. McMullen, P.: Continuous translation-invariant valuations on the space of compact convex sets. Arch. Math. (Basel) 34(4), 377–384 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. McMullen, P.: Valuations and Dissections, Handbook of Convex geometry, vol. A, B, pp. 933–988. North-Holland, Amsterdam (1993)

  44. McMullen, P., Schneider, R.: Valuations on Convex Bodies, Convexity and Its Applications, pp. 170–247. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  45. Petty, C.M.: Projection bodies. In: Proc. Colloquium on Convexity (Copenhagen, 1965). Kobenhavns Univ. Mat. Inst., Copenhagen, pp. 234–241 (1967)

  46. Parapatits, L., Schuster, F.E.: The Steiner formula for Minkowski valuations. Adv. Math. 230(3), 978–994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Parapatits, L., Wannerer, T.: On the inverse Klain map. Duke Math. J. 162(11), 1895–1922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, vol. 151. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  49. Siu, Y.T.: An effective Matsusaka big theorem. Ann. Inst. Fourier (Grenoble) 43(5), 1387–1405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Franz, E.: Schuster and Thomas Wannerer, \({\rm GL}(n)\) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364(2), 815–826 (2012)

    Google Scholar 

  51. Schuster, F., Wannerer, T.: Minkowski valuations and generalized valuations. J. Eur. Math. Soc. (JEMS) 20(8), 1851–1884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I, english ed., Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge (2007) (Translated from the French by Leila Schneps)

  53. Wallach, N.R.: Real Reductive Groups. I, Pure and Applied Mathematics, vol. 132. Academic Press, Inc., Boston, MA (1988)

  54. Wallach, N.R.: Real Reductive Groups. II, Pure and Applied Mathematics, vol. 132. Academic Press, Inc., Boston, MA (1992)

  55. Wannerer, T.: \({\rm GL}(n)\) equivariant Minkowski valuations. Indiana Univ. Math. J. 60(5), 1655–1672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wannerer, T.: Integral geometry of unitary area measures. Adv. Math. 263, 1–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xiao, J.: Bézout type inequality in convex geometry. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx232

Download references

Acknowledgements

We would like to thank S. Boucksom and C. Favre for their interests and comments regarding this paper. We are particularly grateful to A. Bernig who suggested many improvements of our first result, to T. Wannerer for pointing out a mistake in our previous version. We would also like to thank S. Alesker for answering several questions on his works on the convolution of valuations. The first author would also like to thank L. DeMarco for supporting his stay in Northwestern University to work on this project. We also thank the referee for the careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen-Bac Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the ERC-starting grant project “Nonarcomp” no. 307856, and by the Brazilian project “Ciência sem fronteiras” founded by the CNPq. During the revision of this paper, the second author is supported in part by Tsinghua University Initiative Scientific Research Program (No. 2019Z07L02016) and NSFC (No. 11901336)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, NB., Xiao, J. Positivity of Valuations on Convex Bodies and Invariant Valuations by Linear Actions. J Geom Anal 31, 10718–10777 (2021). https://doi.org/10.1007/s12220-021-00663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00663-8

Keywords

Mathematics Subject Classification

Navigation