Skip to main content
Log in

Electron removal from hydrogen atoms by impact of multiply charged nuclei

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The boundary-corrected continuum intermediate state (BCIS) method is used to compute total cross sections for electron capture by seven heavy nuclei (\({\mathrm{Li}}^{3+}\), \({{\mathrm{Be}}}^{4+}\), \(\mathrm{B}^{5+}\), \(\mathrm{C}^{6+}\), \(\mathrm{N}^{7+}\), \(\mathrm{O}^{8+}\) and \(\mathrm{F}^{9+}\)) from atomic hydrogen \({{\mathrm{H}}}(1s)\) at impact energies 20–3000 keV/amu. In all the cases, regarding the exit channel, we compute the cross sections \(Q_{if}\) for the specific individual final bound states \(f=(n,l,m)\) of hydrogen-like ions, where throughout \(i=(1,0,0)=1s\) (the ground state of the target, H). The maximal value of the principal quantum number n has been taken to be \(n _\mathrm{max}= 4,\,5\) and 6 for \({\mathrm{Li}}^{3+},\) \({\mathrm{Be}}^{4+}\) and \(\mathrm B^{5+},\) respectively, as well as \(n_\mathrm{max} = 7\) for \(\mathrm{C}^{6+},\) \(\mathrm{N}^{7+},\) \(\mathrm{O}^{8+}\) and \(\mathrm{F}^{9+}.\) All the sub-levels (lm) for every n are included in the computations. Further, the summed cross sections \(Q_{i,{{\Sigma }}}={\sum }_fQ_{if}\) for all the final (f) states are reported. In \(Q_{i,{{\Sigma }}},\) the state-selective cross sections \(Q_{if}\) contain the exact contributions from the final levels with \(n\le n_\mathrm{max}.\) The collective yield from the final states with \(n>n _\mathrm{max}\) is approximated by the Oppenheimer \(n^{-3}\) scaling. To put the present results into perspective, comparisons are made with the boundary-corrected first Born (CB1) and the continuum distorted wave-eikonal final state (CDW-EFS) methods. Both the BCIS and CDW-EFS methods belong to the group of the second-order asymmetric methods for charge-exchange. Most importantly, the available experimental data are used to assess the relative performance of the BCIS method for total cross sections summed over all final states. This type of total cross section databases from our computations can find useful applications in several neighboring disciplines (plasma physics, astrophysics, new energy sources in fusion research) as well as in ion transport physics of relevance to, e.g., radiotherapy in medicine.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Cross section data used in this work are available from the Authors upon reasonable request.]

References

  1. Dž. Belkić, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979)

  2. Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. 36, 1601 (1987)

  3. Dž. Belkić, R. Gayet, A. Salin, At. Data Nucl. Data Tables 51, 59 (1992)

  4. Dž. Belkić, Phys. Scr. 43, 561 (1991)

  5. Dž. Belkić, R. Gayet, A. Salin, Comput. Phys. Commun. 30, 193 (1983)

  6. Dž. Belkić, J. Phys. B 17, 3629 (1984)

  7. G.C. Saha, S. Datta, S.C. Mukherjee, Phys. Rev. A 36, 1656 (1987)

    Article  ADS  Google Scholar 

  8. H.F. Busnengo, S.E. Corchs, E. Martinez, R.D. Rivarola, Phys. Scr. 73, 242 (1997)

    Article  Google Scholar 

  9. H.F. Busnengo, S.E. Corchs, E. Martinez, R.D. Rivarola, Phys. Scr. 62, 88 (1996)

    Article  Google Scholar 

  10. H.F. Busnengo, A.E. Martinez, R.D. Rivarola, Phys. Scr. 51, 190 (1995)

    Article  ADS  Google Scholar 

  11. H. Ryufuku, T. Watanabe, Phys. Rev. A 19, 1538 (1979)

    Article  ADS  Google Scholar 

  12. C.R. Mandal, S. Datta, S.C. Mukherjee, Phys. Rev. A 24, 3044 (1981)

    Article  ADS  Google Scholar 

  13. C.R. Mandal, S. Datta, S.C. Mukherjee, Phys. Rev. A 30, 1104 (1984)

    Article  ADS  Google Scholar 

  14. M.S. Gravielle, J.E. Miraglia, Phys. Rev. A 51, 2131 (1995)

    Article  ADS  Google Scholar 

  15. I.B. Abdurakhmanov, K. Massen-Hane, ShU Alladustov, J.J. Bailey, A.S. Kadyrov, I. Bray, Phys. Rev. A 98, 062710 (2018)

    Article  ADS  Google Scholar 

  16. K. Igenbergs, J. Schweinzer, A. Veiter, L. Perneczky, E. Frühwirth, M. Wallerberger, R.E. Olson, F. Aumayr, J. Phys. B 45, 065203 (2012)

    Article  ADS  Google Scholar 

  17. N. Toshima, Phys. Rev. A 50, 3940 (1994)

    Article  ADS  Google Scholar 

  18. C. Harel, H. Jouin, B. Pons, At. Data Nucl. Data Tables 68, 279 (1998)

    Article  ADS  Google Scholar 

  19. A. Jorge, L.F. Errea, C. Illescas, L. Méndez, Eur. Phys. J. D 68, 227 (2014)

    Article  ADS  Google Scholar 

  20. R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)

    Article  ADS  Google Scholar 

  21. L.F. Errea, C. Illescas, A. Jorge, L. Méndez, I. Rabadán, J. Suárez, J. Phys. Conf. Ser. 576, 012002 (2015)

    Article  Google Scholar 

  22. A.C.K. Leung, T. Kirchner, Phys. Rev. A 97, 062705 (2018)

    Article  ADS  Google Scholar 

  23. M. Das, M. Purkait, C.R. Mandal, Phys. Rev. A 57, 3573 (1998)

    Article  ADS  Google Scholar 

  24. M.B. Shah, T.V. Goffe, H.B. Gilbody, J. Phys. B 11, L233 (1978)

    Article  ADS  Google Scholar 

  25. L.I. Pivovar, YuZ Levchenko, G.A. Krivonosov, Zh Eksp. Teor. Fiz. 59, 19 (1970)

  26. T.V. Goffe, M.B. Shah, H.B. Gilbody, J. Phys. B 12, 3763 (1979)

    Article  ADS  Google Scholar 

  27. I.S. Dmitriev, Y.A. Teplova, Y.A. Belkova, Y.A. Faĭnberg, Zh. Eksp. Teor. Fiz. 125, 5 1052 (2004)

  28. W.G. Graham, K.H. Berkner, R.V. Pyle, A.S. Schlachter, J.W. Stearns, J.A. Tanis, Phys. Rev. A 30, 722 (1984)

    Article  ADS  Google Scholar 

  29. R. Anholt, X.-Y. Xu, Ch. Stoller, J.D. Molitoris, W.E. Meyerhof, B.S. Rude, R.J. McDonald, Phys. Rev. A 37, 1105 (1988)

    Article  ADS  Google Scholar 

  30. F.W. Meyer, R.A. Phaneuf, H.J. Kim, P. Hvelplund, P.H. Stelson, Phys. Rev. A 19, 515 (1979)

    Article  ADS  Google Scholar 

  31. S. Cheng, C.L. Cocke, E.Y. Kamber, C.C. Hsu, S.L. Varghese, Phys. Rev. A 42, 214 (1990)

    Article  ADS  Google Scholar 

  32. P. Richard, J. Hall, J.L. Shinpaugh, J.M. Sanders, T.N. Tipping, T.J.M. Zouros, D.H. Lee, H. Schmidt-Bocking, Nucl. Instrum. Methods A 262, 69 (1987)

    Article  ADS  Google Scholar 

  33. M.B. Shah, H.B. Gilbody, J. Phys. B 11, 121 (1978)

    Article  ADS  Google Scholar 

  34. J.E. Bayfield, G.A. Khayrallah, Phys. Rev. A 12, 869 (1975)

    Article  ADS  Google Scholar 

  35. R.E. Olson, A. Salop, R.A. Phaneuf, F.W. Meyer, Phys. Rev. A 16, 1867 (1977)

    Article  ADS  Google Scholar 

  36. R.A. Phaneuf, F.W. Meyer, R.H. McKnight, Phys. Rev. A 17, 534 (1978)

    Article  ADS  Google Scholar 

  37. H.J. Kim, R.A. Phaneuf, F.W. Meyer, P.H. Stelson, Phys. Rev. A 17, 854 (1978)

    Article  ADS  Google Scholar 

  38. D.H. Crandall, R.A. Phaneuf, F.W. Meyer, Phys. Rev. A 19, 504 (1979)

    Article  ADS  Google Scholar 

  39. P. Beiersdorfer, C.M. Lisse, R.E. Olson, G.V. Brown, H. Chen, Astrophys. J. 549, L147 (2001)

    Article  ADS  Google Scholar 

  40. R.C. Isler, Plasma Phys. Control. Fusion 36, 171 (1994)

    Article  ADS  Google Scholar 

  41. D.M. Thomas, Phys. Plasmas 19, 056118 (2012)

    Article  ADS  Google Scholar 

  42. H. Anderson, M.G. von Hellermann, R. Hoekstra, L.D. Horton, A.C. Howman, R.W.T. Konig, R. Martin, R.E. Olson, H.P. Summers, Plasma Phys. Control. Fusion 42, 781 (2000)

    Article  ADS  Google Scholar 

  43. Y. Ralchenko, I.N. Draganic, J.N. Tan, J.D. Gillaspy, J.M. Pomeroy, J. Reader, U. Feldman, G.E. Holland, J. Phys. B 41, 021003 (2008)

    Article  ADS  Google Scholar 

  44. Dž. Belkić, J. Math. Chem. 47, 1366 (2010)

  45. D. Dollard, J. Math. Phys. 5, 729 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  46. Dž. Belkić, Principles of Quantum Scattering Theory (Institute of Physics, Bristol, 2004)

  47. Dž. Belkić, Quantum Theory of High-Energy Ion-Atom Collisions (Taylor & Francis, London, 2008)

  48. Dž. Belkić (ed), Fast Ion-Atom and Ion-Molecule Collisions (World Scientific, Singapore, 2013)

  49. Dž. Belkić, I. Bray, A. Kadyrov (eds), State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions (World Scientific Publishing, Singapore, 2019)

  50. Dž. Belkić, Phys. Rev. A 47, 3824 (1993)

  51. I. Mančev, N. Milojević, Dž. Belkić, Phys. Rev. A 91, 062705 (2015)

  52. I. Mančev, N. Milojević, Dž. Belkić, Eur. Phys. J. D 72, 209 (2018)

  53. I. Mančev, N. Milojević, D. Delibašić, Dž. Belkić, Phys. Scr. 95, 065403 (2020)

  54. N. Milojević, I. Mančev, D. Delibašić, Dž. Belkić, Phys. Rev. A 102, 012816 (2020)

  55. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1954)

    MATH  Google Scholar 

  56. Dž. Belkić, Phys. Rev. A 37, 55 (1988)

  57. J.R. Oppenheimer, Phys. Rev. 31, 349 (1928)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

DD, NM and IM thank the Ministry of Education, Science and Technological Development of the Republic of Serbia, for support under Contract No. 451-03-9/2021-14/200124. DžB appreciates support by the Research Funds of the Radiumhemmet and the fund for research, development and education (FoUU) of the Stockholm County Council.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to I. Mančev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delibašić, D., Milojević, N., Mančev, I. et al. Electron removal from hydrogen atoms by impact of multiply charged nuclei. Eur. Phys. J. D 75, 115 (2021). https://doi.org/10.1140/epjd/s10053-021-00123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00123-6

Navigation