Skip to main content

Advertisement

Log in

A survey and classification on applications of antenna in health care domain: data transmission, diagnosis and treatment

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In present era antenna is playing a prominent role in biomedical engineering for improving health and quality of life. Pacemakers, deep neural implants, endoscopy, magnetic resonance imaging, microwave imaging and clinical instruments for thermal ablation are some examples of health care instruments which are taking the benefits of antenna and wireless body area network. Antennas can be implanted, placed on body and swallowed to transfer diagnosis information from the human body to the external monitor and further to the doctor or concern person through internet. In addition, variation in the electrical parameter of antenna like near field electromagnetic radiations, impedance, reflection coefficient can be analyzed to detect diseases non-invasively. Breast and brain tumour detection, cancer detection and motion detection are some of the important applications of antennas. Moreover, heating effect of electromagnetic field is also valuable to treat the malignant cell tissues. In this survey paper, authors have covered all the possible application of antenna and the challenges faced by antenna designers to make them suitable for specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Singh T, Stevanovic M N and Kolundzija B 2019 Survey and classification of antennas for medical applications. In: 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland 2019, pp. 1–5

  2. Koichi I 2007 Recent antenna technology for medical applications. In: Second European Conference on Antennas and Propagation, EuCAP 2007, pp. 1–11. IET

  3. Kang J J, Luan T H and Larkin H 2016 Data processing of physiological sensor data and alarm determination utilising activity recognition. Int. J. Inf. Commun. Technol. Appl. 2: 108–131

    Google Scholar 

  4. Gupta A, Kansal A and Chawla P 2019 Design of a patch antenna with square ring-shaped coupled ground for on-/off body communication. Int. J. Electron. 106: 1214–1228

    Article  Google Scholar 

  5. Savci H S, Sula A, Wang Z, Dogan N S and Arvas E 2005 MICS transceivers: regulatory standards and applications. In: Proceedings of the IEEE International Southeast Conference, April 2005

  6. Sánchez-Fernández C J, Quevedo-Teruel O, Carrión J R, Inclán-Sánchez L and Rajo-Iglesias E 2010 Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microw. Antennas Propag. 4: 1048–1055

    Article  Google Scholar 

  7. Psathas K A, Kiourti A and Nikita K S 2013 A novel conformal antenna for ingestible capsule endoscopy in the med-radio band. Electromagn. Res. Symp. Proc. Stockholm Sweden 2013(12–15): 1899–1902

    Google Scholar 

  8. International Telecommunications Union-Radiocommunications (ITU-R), Radio Regulations, Section 5.138 and 5.150, ITU, Geneva, Switzerland.: http://itu.int/home

  9. Kaur G, Kaur A, Toor G K, Dhaliwal B S and Pattnaik S S 2015 Antennas for biomedical applications. Biomed. Eng. Lett. 5: 203–212

    Article  Google Scholar 

  10. Kumar V and Gupta B 2016 On-body measurements of SS-UWB patch antenna for WBAN applications. Int. J. Electron. Commun. (AEÜ). https://doi.org/10.1016/j.aeue.2016.02.003

    Article  Google Scholar 

  11. Koo T W, Hong Y J, Park G K, Shin S and Yoo J W 2012 Extremelly low profile antenna for attachable bio sensors. IEEE Trans. Antennas Propag. 63: 1537–1544

    Article  MATH  Google Scholar 

  12. Kumar A, Badhai R K and Suraj P 2018 Design of printed symmetrical CPW-fed monopole antenna for on-body medical diagnosis applications. J. Comput. Electron. 17(4): 1741–1747

    Article  Google Scholar 

  13. Basar M R, Malek F, Juni K M, Idris M S and Saleh M 2014 Ingestible wireless capsule technology: a review of development and future indication. Int. J. Antenna Propag. 12: 1–14

    Google Scholar 

  14. Izdebski P M, Rajagopalan H and Rahmat-Samii Y 2009 Conformal ingestible capsule antenna: A novel chandelier meandered design. IEEE Trans. Antennas Propag. 57(4): 900–909

    Article  Google Scholar 

  15. Gabriel S, Lau R W and Gabriel C 1996 The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41: 2271–2293

    Article  Google Scholar 

  16. Rajagopalan H and Samii Y R 2012 Wireless medical telemetry characterization for ingestible capsule antenna designs. IEEE Antenna Wirel. Propag. 11: 1679–1682

    Article  Google Scholar 

  17. Lee S H, Lee J, Yoon Y J, Park S, Cheon C, Kim K and Nam S 2011 A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig. IEEE Trans. Biomed. Eng. 58: 1734–1741

    Article  Google Scholar 

  18. Hatmi F E, Grzeskowiak M, Protat S and Picon O 2012 Link budget of magnetic antennas for ingestible capsule at 40 MHz. In: 6th European Conference on Antennas and Propagation (EUCAP), Prague, pp. 1–5

  19. Cheng X, Wu J, Blank R, Senior D E and Yoon Y K 2012 An omnidirectional wrappable compact patch antenna for wireless endoscope applications. IEEE Antennas Wirel. Propag. Lett. 11: 1667–1670

    Article  Google Scholar 

  20. Miah M, Icheln C, Haneda K and Takizawa K I 2018 Antenna systems for wireless capsule endoscope: Design, analysis and experimental validation. arXiv:1804.01577

  21. Alrawashdeh R S, Huang Y, Kod M and Sajak A A 2015 A broadband flexible implantable loop antenna with complementary split ring resonators. IEEE Antennas Wirel. Propag. Lett. 14: 1506–1509

    Article  Google Scholar 

  22. Xu L J, Guo Y X and Wu W 2014 Bandwidth enhancement of an implantable antenna. IEEE Antennas Wirel. Propag. Lett. 24: 1510–1513

    Google Scholar 

  23. Baek J J, Kim S W and Kim Y T 2020 Camera-integrable wide-bandwidth antenna for capsule endoscope. Sensors 20: 232

    Article  Google Scholar 

  24. Bao Z, Guo Y X and Mittra R 2017 An ultrawideband conformal capsule antenna with stable impedance matching. IEEE Trans. Antennas Propag. 65: 5086–5094

    Article  Google Scholar 

  25. Liu C, Guo Y X and Xiao S 2014 Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems. IEEE Trans. Antennas Propag. 62: 6027–6039

    Article  MathSciNet  MATH  Google Scholar 

  26. Li Y, Guo Y X and Xiao S 2017 Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system. IEEE Trans. Antennas Propag. 65:(7) 3738–3743

    Article  Google Scholar 

  27. Ginestet G, Brechet N, Torres J, Moradi E, Ukkonen L, Bjorninen T and Virkki J 2017 Embroidered antenna-microchip interconnections and contour antennas in passive in UHF RFID textile tags. IEEE Antennas Wirel. Propag. Lett. 16: 1205–1208

    Article  Google Scholar 

  28. Rohit C and Johansson A J 2015 Antennas and propagation for in-mouth tongue-controlled devices in wireless body area networks. IEEE Antennas Wirel. Propag. Lett. 14: 1518–1521

    Article  Google Scholar 

  29. Jinpil T, Hong Y and Choi J 2015 Textile antenna with EBG structure for body surface wave enhancement. Electron. Lett. 51: 1131–1132

    Article  Google Scholar 

  30. Kim J and Rahmat-Samii Y 2001 Implanted antennas inside a human body: Simulations, designs, and characterizations. IEEE Trans. Microw. Theory Tech. 52: 1934–1943

    Article  Google Scholar 

  31. Kiourti A and Konstantina S N 2012 Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Trans. Antennas Propag. 60: 3568–3575

    Article  MathSciNet  MATH  Google Scholar 

  32. Gao G, Yang C, Hu B, Zhang R and Wang S F 2019 A Wide bandwidth wearable all-textile pifa with dual resonance modes for 5-GHz WLAN applications. IEEE Trans. Antennas Propag.. https://doi.org/10.1109/TAP.2019.2905976

    Article  Google Scholar 

  33. Karacolak T, Hood A Z and Topsakal E 2008 Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans. Microw. Theory Tech. 56: 1001–1008

    Article  Google Scholar 

  34. Gupta A, Kansal A and Chawla P 2020 Design of a wearable MIMO antenna deployed with an inverted u-shaped ground stub for diversity performance enhancement. Int. J. Microw. Wirel. Technol.. https://doi.org/10.1017/S1759078720000471

    Article  Google Scholar 

  35. Duan Z, Xu L and Geyi W 2017 Metal frame repeater antenna with partial slotted ground for bandwidth enhancement of wristband devices. IET Microw. Antennas Propag. 11: 1438–1444

    Article  Google Scholar 

  36. Jinpil T, Lee S and Choi J 2014 All-textile higher order mode circular patch antenna for on-body to on-body communications. IET Microw. Antennas Propag. 9: 576–584

    Google Scholar 

  37. Soh P J, Vandenbosch G A E, Ooi S L and Rais N M H 2012 Design of a broadband all-textile slotted PIFA. IEEE Trans. Antennas Propag. 60: 379–384

    Article  Google Scholar 

  38. Varshini K and Rao T R 2017 Investigations on SAR and thermal effects of a body wearable microstrip antenna. Wirel. Pers. Commun. 96: 1–17

    Google Scholar 

  39. Bai Q and Langley R 2012 Crumpling of PIFA textile Antenna. IEEE Trans. Antennas Propag. 60: 63–70

    Article  Google Scholar 

  40. Lilja J, Salonen P, Kaija T and Maagt P 2012 Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans. Antennas Propag. 60: 4130–4140

    Article  Google Scholar 

  41. Abbasi M B, Nikolaou S, Antoniades M A, Stevanovic M N and Vyronides P 2017 Compact EBG backed planar monopole for BAN wearable applications. IEEE Trans. Antennas Propag. 65: 453–462

    Article  Google Scholar 

  42. Linda P, Yimdjo A, Soh P J, Yan S and Vandenbosch G A E 2016 A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications. IEEE Trans. Antennas Propag. 64: 757–760

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang Z H, Brocker D E, Sieber P E and Werner D H 2014 A compact, low profile metasurface enabled antenna for wearable medical body area network devices. IEEE Trans. Antennas Propag. 62: 4021–4030

    Article  MATH  Google Scholar 

  44. Yan S, Soh P J and Vandenbosch G A E 2015 Dual-band textile MIMO antenna based on Substrate Integrated Waveguide (SIW) technology. IEEE Trans. Antennas Propag. 63: 4640–4647

    Article  MathSciNet  MATH  Google Scholar 

  45. Gupta A, Kansal A and Chawla P 2020 Design and performance analysis of L-shaped ground and radiator antenna with a metallic reflector for WBAN. Int. J. Electron.. https://doi.org/10.1080/00207217.2020.1793408

    Article  Google Scholar 

  46. Gupta A and Kumar V 2020 Design of a tri-band patch antenna with back reflector for off-body communication. Wirel. Pers. Commun. 11: 1–3

    Google Scholar 

  47. Yan S, Volskiy V and Vandenbosch G A E 2017 Compact dual-band textile PIFA for 433-MHz/2.4-GHz ISM bands. IEEE Antennas Wirel. Propag. Lett. 16: 2436–2439

    Article  Google Scholar 

  48. Agarwal K, Guo Y and Salam B 2016 Wearable AMC backed near-end fire antenna for on-body communications on latex substrate. IEEE Trans. Compon. Packag. Manuf. Technol. 6: 346–358

    Article  Google Scholar 

  49. Hong Y, Tak J and Choi J 2015 An all textile SIW cavity-backed circular ring slot antenna for WBAN applications. IEEE Antennas Wirel. Propag. Lett. 15: 1995–1999

    Article  Google Scholar 

  50. Agneessens S 2018 Coupled eighth-mode substrate integrated waveguide antenna: Small and wideband with high-body antenna isolation. IEEE Access 6: 1595–1602

    Article  Google Scholar 

  51. Ashyap Y I, Abidin Z Z, Dahlan S H, Majid H A and Saleh G 2019 Metamaterial inspired fabric antenna for wearable applications. Int. J. RF Microw. Comput. Aided Eng. 29: e21640

    Article  Google Scholar 

  52. Arif A, Zubair M, Ali M, Khan M U and Mehmood M Q 2019 A compact, low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas Wirel. Propag. Lett. 18: 981–985

    Article  Google Scholar 

  53. Al-Sehemi A, Al-Ghamdi A, Dishovsky N, Atanasov N and Atanasova G 2017 On-body investigation of a compact planar antenna on multilayer polymer composite for body-centric wireless communications. Int. J. Electron. Commun. 82: 20–29

    Article  Google Scholar 

  54. Rana B, Shim J and Chung J 2019 An implantable antenna with broadside radiation for a brain–machine interface. IEEE Sens. J. 19: 9200–9205

    Article  Google Scholar 

  55. Liu X Y 2017 A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring. IEEE Antennas Wirel. Propag. Lett. 16: 577–580

    Article  Google Scholar 

  56. Kaka A O, Toycan M and Walker S T 2018 Circularly polarized implantable antenna characterization for retinal prosthesis systems. Turk. J. Electr. Eng. Comput. Sci. 26(3): 1180–1189

    Google Scholar 

  57. Vorobyov A, Hennemann C, Vasylchenko A, Decotignie J and Baumgartner J 2014 Folded loop antenna as a promissing solution for a cochlear implant. In: 8th European Conference on Antennas and Propagation (EuCAP 2014). The Hague, pp. 1735–1738. https://doi.org/10.1109/EuCAP.2014.6902127

  58. Tsai C L, Chen K and Yang C 2016 Implantable wideband low-specific-absorption-rate antenna on a thin flexible substrate. IEEE Antennas Wirel. Propag. Lett. 15: 1048–1052

    Article  Google Scholar 

  59. Usuler M, Cetindere B and Basaran S C 2019 Compact implantable antenna design for MICS and ISM band biotelemetry applications. Microw. Opt. Technol. Lett.. https://doi.org/10.1002/mop.32185

    Article  Google Scholar 

  60. Li R Q, Guo Y X, Zhang B and Du G H 2017 A miniaturized circularly polarized implantable annular-ring antenna. IEEE Antennas Wirel. Propag. Lett. 16: 2566–2569

    Article  Google Scholar 

  61. Liu C R, Guo Y X and Xiao S Q 2014 Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications. IEEE Trans. Antennas Propag. 62: 2407–2417

    Article  Google Scholar 

  62. Hout S and Chung J Y 2019 Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom. IEEE Access 7: 162062–162069

    Article  Google Scholar 

  63. Luo L, Hu B, Wu J, Yan T and Xu L-J 2019 Compact dual band antenna with slotted ground for implantable applications. Microw. Opt. Technol. Lett. 61: 1314–1319

    Article  Google Scholar 

  64. IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300GHz. IEEE Standard C95.1, 1999

  65. IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Standard C95.1, 2005

  66. Kim J and Rahmat-Samii Y 2006 SAR reduction of implanted planar inverted f antennas with non-uniform width radiator. In: IEEE International Symposium on Antennas and Propagation, Albuquerque, New Mexico

  67. Zada M, Shah I A and Yoo H 2020 Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications. IEEE Trans. Antennas Propag. 68: 1140–1144

    Article  Google Scholar 

  68. Cho Y and Yoo H 2016 Miniaturised dual-band implantable antenna for wireless biotelemetry. Electron. Lett. 52: 1005–1007

    Article  Google Scholar 

  69. Sharma A, Eleftherios K and Reynolds M S 2017 A dual-band HF and UHF antenna system for implanted neural recording and stimulation devices. IEEE Antennas Wirel. Propag. Lett. 16: 493–496

    Article  Google Scholar 

  70. Kumar V K and Thakur D 2020 Design and performance analysis of a CPW-fed circularly polarized implantable antenna for 2.45 GHz ISM band. Microwave Opt. Technol. Lett.. https://doi.org/10.1002/mop.32514

    Article  Google Scholar 

  71. Skrivervik A K and Merli F 2011 Design Strategies for Implantable Antennas. In: Proceedings of the Antennas and Propagation Conference, Loughborough, UK

  72. Karacolak T, Cooper R, Butler J, Fisher S and Topsakal E 2010 In Vivo verification of implantable antennas using rats as model animals. IEEE Antennas Wirel. Propag. Lett. 9: 334–337

    Article  Google Scholar 

  73. Yang Z, Zhu L and Xiao S 2018 An implantable circularly polarized patch antenna design for pacemaker monitoring based on quality factor analysis. IEEE Trans. Antennas Propag. 66: 5180–5192

    Article  Google Scholar 

  74. Xia Z, Li H, Lee Z, Xiao S, Shao W, Ding X and Yang X 2020 A wideband circularly polarized implantable patch antenna for ISM band medical applications. IEEE Trans. Antennas Propag. 68: 2399–2404

    Article  Google Scholar 

  75. Xu L-J, Jin X, Hua D, Lu W-J and Duan Z 2020 Realization of circular polarization and gain enhancement for implantable antenna. IEEE Access 8: 16857–16864

    Article  Google Scholar 

  76. Baharami H 2016 Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans. Biomed. Circuits Syst. 10: 38–48

    Article  Google Scholar 

  77. Ruaro A, Thaysen J and Jakobsen K B 2016 Wearable shell antenna for 2.4 GHz hearing instruments. IEEE Trans. Antennas Propag. 64: 2127–2135

    Article  MathSciNet  MATH  Google Scholar 

  78. Chandra R and Johansson A J 2014 Antennas and propagation for in-mouth tongue- controlled devices in wireless body area networks. IEEE Antennas Wirel. Propag. Lett. 14: 1518–1521

    Article  Google Scholar 

  79. Kaim V, Kanaujia B K and Rambabu K 2018 Design of a miniaturised broadband 3 × 3 mm antenna for intraocular retinal prosthesis application. Electron. Lett. 54: 1150–1152

    Article  Google Scholar 

  80. https://www.mwrf.com/technologies/systems/article/21844624/resonators-support-uhf-mri-systems

  81. Ibrahim T S, Lee R, Baertlein B A, Abduljalil A M, Zhu H and Robitaille P L 2001 Effect of RF coil excitation on field inhomogeneity at ultra-high fields: A field optimized TEM resonator. Magn. Reson. Imaging 19: 1339–1347

    Article  Google Scholar 

  82. Barry R L, Vannesjo S J, By S, Gore J C and Smith S A 2017 Spinal cord MRI at 7T. Neuro Image. https://doi.org/10.1016/j.neuroimage.2017.07.003

    Article  Google Scholar 

  83. Shulman R M and Hunt B 2018 Cardiac implanted electronic devices and MRI safety in 2018—the state of play. Eur. Radiol. 28: 4062–4065. https://doi.org/10.1007/s00330-018-5396-0

    Article  Google Scholar 

  84. Li S, Yang Q X and Smith M B 1994 RF coil optimization: Evaluation of B1 field homogeneity using field histograms and finite element calculations. Magn. Reson. Imaging 12: 1079–1087

    Article  Google Scholar 

  85. Truonga T, Clymerb B D, Chakeresa D W and Schmalbrocka P 2002 Three-dimensional numerical simulations of susceptibility-induced magnetic field inhomogeneities in the human head. Magn. Reson. Imaging 20: 759–770

    Article  Google Scholar 

  86. Imran A I and Elwi T A 2017 A cylindrical wideband slotted patch antenna loaded with Frequency Selective Surface for MRI applications. Eng. Sci. Technol. Int. J. 20: 990–996

    Google Scholar 

  87. Hoffmann J, Shajan G, Budde J, Scheffler K and Pohmann R 2013 Human brain imaging at 9.4 T using a tunable patch antenna for transmission. Magn. Reson. Med. 69: 1494–1500

    Article  Google Scholar 

  88. Raaijmakers A J E, Italiaander M, Voogt I J, Luijten P R, Hoogduin J M, Klomp D W J and Berg C V 2016 The fractionated dipole antenna: a new antenna for body imaging at 7 tesla. Magn. Reson. Med. 75: 1366–1374

    Article  Google Scholar 

  89. Lazebnik M, McCartney L, Popovic D, Watkins C B, Lindstrom M J and Harter J et al. 2007 A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys. Med. Biol. 52: 2637

    Article  Google Scholar 

  90. Davis S K, Veen V, Hagness B D and Kelcz F. 2008 Breast tumour characterization based on ultrawideband microwave backscatter. IEEE Trans. Biomed. Eng. 55: 237–246

    Article  Google Scholar 

  91. Misilmani E I, Naous H M, Al Khatib T and Kabalan S K 2020 A survey on antenna designs for breast cancer detection using microwave imaging. IEEE Access 8: 102570–102594

    Article  Google Scholar 

  92. Jalilvand M, Li X, Zwirello L and Zwick T 2015 Ultrawideband compact near-field imaging system for breast cancer detection. IET Microw. Antennas Propag. 9: 1009–1014

    Article  Google Scholar 

  93. Mahmud Z 2018 Microwave imaging for breast tumour detection using unipolar AMC based CPW Fed Microstrip patch. IEEE Access 6: 44763–44775

    Article  Google Scholar 

  94. Mohammed B A J, Abbosh A M and Sharpe P 2013 Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. Int. J. RF Microw. Comput. Aided Eng. 23: 59–66

    Article  Google Scholar 

  95. Kanj H and Popovic M 2005 Miniaturized microstrip-fed Dark Eyes antenna for near-field microwave sensing. IEEE Antennas Wirel. Propag. Lett. 4: 397–401

    Article  Google Scholar 

  96. Pandey G, Verma H and Meshram M 2015 Compact antipodal Vivaldi antenna for UWB applications. Electron. Lett. 51: 308–310

    Article  Google Scholar 

  97. Nassar I T and Weller T M 2015 A novel method for improving antipodal vivaldi antenna performance. IEEE Trans. Antennas Propag. 63: 3321–3324

    Article  Google Scholar 

  98. Tiang S S, Hathal M S, Zanoon T F, Ain M F and Abdullah M Z 2013 Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for earlystage breast cancer detection. Prog. Electromagn. Res. 46: 299–316

    Article  Google Scholar 

  99. Selvaraj V, Baskaran D, Rao P H, Srinivasan P and Krishnan R 2018 Breast tissue tumour analysis using wideband antenna and microwave scattering. IETE J. Res. 23: 1–11

    Google Scholar 

  100. Wu B, Ji Y and Fang G 2009 In electronic measurement & instruments, ICEMI’09. In: 9th International Conference, 2-226-222-229 (IEEE)

  101. Xu B, Li Y and Kim Y 2017 Classification of finger movements based on reflection coefficient variations of a body-worn electrically small antenna. IEEE Antennas Wirel. Propag. Lett. 16: 1812–1815

    Google Scholar 

  102. Li Y and Kim Y 2017 Classification of human activities using variation in impedance of single on-body antenna. IEEE Antennas Wirel. Propag. Lett. 16: 541–544

    Article  Google Scholar 

  103. Serra A, Nepa P, Manara G, Corsini G and Volakis J L 2010 A single on-body antenna as a sensor for cardiopulmonary monitoring. IEEE Antennas Wirel. Propag. Lett. 9: 930–933

    Article  Google Scholar 

  104. Caliskan R, Gultekin S S, Uzer D and Dundar O 2015 A microstrip patch antenna design for breast cancer detection. Procedia Soc. Behav. Sci. 195: 2905–2911

    Article  Google Scholar 

  105. Islam T, Samsuzzaman M, Faruque M R I, Singh M and Islam M T 2019 Microwave imaging-based breast tumor detection using compact wide slotted UWB patch antenna. Optoelectron. Adv. Mater. Rapid Commun. 13: 448–457

    Google Scholar 

  106. Attaran A, Handler W B and Chronik B A 2019 12 mm radius loop antenna and linear active balun for near field measurement of magnetic field in MRI-conditional testing of medical devices. IEEE Trans. Electromagn. Compat. 99: 1–8

    Google Scholar 

  107. Solomakha G, Svejda J T, Leeuwen C V, Rennings A, Raaijmakers A J, Glybovski S and Erni D 2020 Self-Matched Leaky-Wave Antenna for Ultrahigh-Field MRI with Low SAR. arXiv:2001.10410

  108. Wilhelm E T, Winter L, Han H, Oberacker E, Kuehne A, Waiczies H and Schmitter S et al. 2020 Wideband self-grounded bow-tie antenna for thermal MR. NMR Biomed. 33: e4274

    Google Scholar 

  109. Leeor A, Lattanzi R, Lakshmanan K, Brown R, Deniz C M, Sodickson D K and Collins C M 2018 Transverse slot antennas for high field MRI. Magn. Reson. Med. 80: 1233–1242

    Article  Google Scholar 

  110. Mohammed B, Abbosh A M, Mustafa S and Ireland D 2013 Microwave system for head imaging. IEEE Trans. Instrum. Meas. 63: 117

    Article  Google Scholar 

  111. Thomas R and Brace C L 2017 Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int. J. Hyperth. 33: 3–14

    Article  Google Scholar 

  112. Qian G, Wang N, Shen Q, Sheng Q, Zhao J, Kuang M, Liu G and Wu M 2012 Efficacy of microwave versus radiofrequency ablation for treatment of small hepatocellular carcinoma: Experimental and clinical studies. Eur. Radiol. 22: 1983–1990

    Article  Google Scholar 

  113. Zimmerman J W, Jimenez H, Pennison M J, Brezovich I, Morgan D, Mudry A, Costa F P, Barbault A and Pasche B 2013 Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies. Chin. J. Cancer 32: 573

    Article  Google Scholar 

  114. Violi N V, Duran R, Guiu B, Cercueil J, Aubé C, Digklia A, Pache I, Deltenre P, Knebel J F and Denys A 2018 Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: A randomised controlled phase 2 trial. Lancet Gastroenterol Hepatol 3: 317–325

    Article  Google Scholar 

  115. Glassberg M B, Ghosh S, Clymer J W, Qadeer R A, Ferko N C, Sadeghirad B, Wright G W J and Amaral J F 2019 Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular and liver metastases: A systematic review and meta-analysis. OncoTargets Therapy 12: 6407

    Article  Google Scholar 

  116. Wright A S, Sampson L A, Warner T F, Mahvi D M, Lee J and Fred T 2005 Radiofrequency versus microwave ablation in a hepatic porcine model 1. Radiology 236: 132–139

    Article  Google Scholar 

  117. Ortega-Palacios R, Trujillo-Romero C J, Rubio M F J, Vera A, Leija L, Reyes J L, Ramírez-Estudillo M C, Alvarez F and Vega-López M A 2018 Feasibility of using a novel 2.45 GHz double short distance slot coaxial antenna for minimally invasive cancer breast microwave ablation therapy: Computational model, phantom, and in vivo swine experimentation. J. Healthc. Eng.. https://doi.org/10.1155/2018/5806753

    Article  Google Scholar 

  118. Labonte S, Blais A, Legault S R, Ali H O and Roy L 1996 Monopole antennas for microwave catheter ablation. IEEE Trans. Microw. Theory Tech. 44: 1832–1840

    Article  Google Scholar 

  119. Hurter W, Reinbold F and Lorenz W 1991 A dipole antenna for interstitial microwave hyperthermia. IEEE Trans. Microwave Theory Tech. 39: 1048–1054

    Article  Google Scholar 

  120. Longo I, Gentili G B, Cerretelli M and Tosoratti N 2003 A coaxial antenna with miniaturized choke for minimally invasive interstitial heating. IEEE Trans. Biomed. Eng. 50: 82–88

    Article  Google Scholar 

  121. Brace C L 2011 Dual-slot antennas for microwave tissue heating: Parametric design analysis and experimental validation. Med. Phys. 38: 4232–4240

    Article  Google Scholar 

  122. Liu D and Brace C L 2014 CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction. Med. Phys. 41: 113303

    Article  Google Scholar 

  123. Rossmann C, Garrett-Mayer E, Rattay F and Haemmerich D 2014 Dynamics of tissue shrinkage during ablative temperature exposures. Physiol. Measure 35: 55

    Article  Google Scholar 

  124. Lopresto V, Pinto R, Lovisolo G A and Cavagnaro M 2012 Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys. Med. Biol. 57: 2309

    Article  Google Scholar 

  125. Bertram J M, Yang D, Converse M C, Webster J G and Mahvi D M 2006 A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit. Rev. Biomed. Eng. 34: 187

    Article  Google Scholar 

  126. Shock S A, Meredith K and Warner T F et al. 2004 Microwave ablation with loop antenna: in vivo porcine liver model. Radiology 231: 143–149

    Article  Google Scholar 

  127. McWilliams B T, Schnell E E, Curto S, Fahrbach T M and Prakash P 2015 A directional interstitial antenna for microwave tissue ablation: theoretical and experimental investigation. IEEE Trans. Biomed. Eng. 62: 2144–2150

    Article  Google Scholar 

  128. Ito K, Saito K and Takahashi M 2007 Small antennas for medical applications. In: International Workshop on Antenna Technology (IWAT 2007), Cambridge, pp. 116–119

  129. Ito K 2008 Recent small antennas for medical applications. In: Int. Workshop on IWAT '08, Chiba, March 2008, pp. 1–4

  130. Saito K, Yoshimura H, Ito K, Aoyagi Y and Horita H 2004 Clinical trials of interstitial microwave hyperthermia by use of coaxial-slot antenna with two slots. IEEE Trans. Microwave Theory 52: 1987–1991

    Article  Google Scholar 

  131. Lee M, and Taeho S 2019 Helical slot antenna for the microwave ablation. Int. J. Antennas Propag.

  132. Hancock C, Dharmasiri N, Duff C I and White M 2013 New microwave antenna structures for treating gastro-oesophageal reflux disease (GERD). IEEE Trans. Microwave Theory Tech. 61: 2242–2252

    Article  Google Scholar 

  133. Acikgoz H and Turer I 2014 A novel microwave coaxial slot antenna for liver tumor ablation. Adv. Electromagn. 3: 20–25

    Article  Google Scholar 

  134. Cheol C W, Lim S and Yoon Y J 2020 Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment. IEEE Antennas Wirel. Propag. Lett. 19: 866–870

    Article  Google Scholar 

  135. Little M W, Chung D, Boardman P, Gleeson F V and Anderson E M 2013 Microwave ablation of pulmonary malignancies using a novel high-energy antenna system. Cardiovasc. Interv. Radiol. 36: 460–465

    Article  Google Scholar 

  136. Etoz S and Brace C L 2018 Analysis of microwave ablation antenna optimization techniques. Int. J. RF Microwave Comput. Aided Eng. 28: e21224

    Article  Google Scholar 

  137. Acikgoz H and Mittra R 2015 Microwave coaxial antenna for cancer treatment: reducing the backward heating using a double choke. In: International Symposium on Antennas and Propagation, pp. 1–4

  138. Pisa S, Cavagnaro M, Bernardi P and Lin J C 2001 A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modelling and experimental measurement. IEEE Trans. Biomed. Eng. 48: 599–601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupma Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kansal, A. & Chawla, P. A survey and classification on applications of antenna in health care domain: data transmission, diagnosis and treatment. Sādhanā 46, 68 (2021). https://doi.org/10.1007/s12046-021-01586-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01586-4

Keywords

Navigation