Skip to main content
Log in

Removing the Vegetation Effect in Mineral Maps Produced by Hyperion

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Estimation of mineral quantity with the presence of dry and green vegetation at pixel level is a challenging task in hyperspectral image analysis. A multiple linear regression model was trained to remove the effect of vegetation at pixel level in Hyperion image. The main diagnostic absorption features of the minerals in the study area are in 900, 2160, 2200, 2235 nm of the VNIR spectrum.   In this study, the trained models did not show high sensitivity to the presence of noise in the spectrum and the vegetation cover changes on the ground. The maximum observed amount of green vegetation, dry vegetation, and mixed green and dry vegetation were respectively 41%–60%, 59%–64%, and 61%–76% in the study area. Field spectroscopy measurements were carried out by ASD-Fieldspec-3. Vegetation Corrected Continuum Depth (VCCD) model were developed for obtaining Continuum Removed Band Depth (CRBD) of mineral diagnostic absorption features. The model efficiency was evaluated in the presence of random noise and via introducing vegetation type changes. The accuracy of results was evaluated by the petrography, XRD and XRF of collected rock samples. Our results revealed that the presence of dry vegetation leads to underestimation of the frequency of all investigated minerals; similarly, green vegetation leads to underestimation of the frequency of the minerals, with the exception of hematite and goethite. Our results also showed that linear unmixing at pixel level will increase the accuracy of the algorithm to predict kaolinite, alunite, epidote, chlorite, pyrophyllite, goethite, muscovite and hematite minerals, respectively. In this work the maximum and minimum improvements of the accuracy were obtained as 0.40 and 0.09 for epidote and hematite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand, R. R., & Butt, C. R. M. (2010). A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 57, 1015–1114.

    Article  Google Scholar 

  • Asner, G. P., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 23, 3939–3958.

    Article  Google Scholar 

  • Bartholomeus, H., Kooistra, L., & Stevens, A. (2011). Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 13, 81–88.

    Article  Google Scholar 

  • Bierwirth, P., Huston, D., & Blewett, R. (2002). Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia. Economic Geology, 97, 819–826.

    Article  Google Scholar 

  • Bishop, J. L., & Murad, E. (2005). The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 1100–1107.

    Article  Google Scholar 

  • Chao, Z., Daming, W., Shengbo, C., Yanli, L., & Mingchang, W. (2015). Vegetation corrected continuum depths model and its application in mineral extraction from hyperspectral image. Earth Science, 40, 1365–1370.

    Google Scholar 

  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy quantitative-analysis techniques for remote-sensing applications. Journal of Geophysical Research, 89, 6329–6340.

    Article  Google Scholar 

  • Crippen, R. E., & Blom, R. G. (2001). Unveiling the lithology of vegetated terrains in remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 67, 935–943.

    Google Scholar 

  • Cudahy TJ, & Barry PS (2002) Earth magmatic-seawater hydrothermal alteration revealed through satellite-borne Hyperion imagery at Panorama, Western Australia. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Ontario, Canada, Canada, 24–28 June.

  • Drury, S. A. (1993). Image interpretation in geology (2nd ed.). Chapman and Hall.

    Google Scholar 

  • Elvidge, C. D. (1990). Visible and near-infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing, 11, 1775–1795.

    Article  Google Scholar 

  • Franceschini, M. H. D., Demattêa, J. A. M., Silva, T. F., Vicente, L. E., Bartholomeus, H., & de Souza Filho, C. R. (2015). Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. International Journal of Applied Earth Observation and Geoinformation, 38, 358–370.

    Article  Google Scholar 

  • Fredericks, P. M., Osborn, P. R., & Swinkels, A. J. (1985). Rapid characterization of iron ore by Fourier transform infrared spectrometry. Analytical Chemistry, 57, 1947–1950.

    Article  Google Scholar 

  • Galvão, L., Almeida-Filho, R., & Vitorello, Í. (2005). Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation, 7, 107–114.

    Article  Google Scholar 

  • Grebby, S., Cunningham, D., Tansey, K., & Naden, J. (2014). The impact of vegetation on lithological mapping using airborne multispectral data: A case study for the North Troodos Region, Cyprus. Remote Sensing, 6, 10860–10887.

    Article  Google Scholar 

  • Haest, M., Cudahy, T., Laukamp, C., & Gregory, S. (2012). Quantitative mineralogy from visible to shortwave infrared spectroscopic data: (I) Validation of mineral abundance and composition algorithms at the Rocklea Dome channel iron deposit in Western Australia. Economic Geology, 107, 209.

    Article  Google Scholar 

  • Haest, M., Cudahy, T., Rodger, A., Laukam, C., Martens, E., & Caccetta, M. (2013). Unmixing the effects of vegetation in airborne hyperspectral mineral maps over the Rocklea Dome iron-rich palaeochannel system (Western Australia). Remote Sensing of Environment, 129, 17–31.

    Article  Google Scholar 

  • Haest M, Cudahy T, Laukamp C, Ramanaidou ER, Gregory S, & Stark J (2011) Characterisation of bedded & channel iron deposits using CSIRO's HyLoggingTM systems. Proceedings for Iron Ore, Meeting Growing Demand, 11–13

  • Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., & Mauger, A. J. (2005). Seamless geological map generation using ASTER in Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99, 159–172.

    Article  Google Scholar 

  • Kokaly, R., & Clark, R. (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of features and stepwise multiple linear regression. Remote Sensing of Environment, 67, 267–287.

    Article  Google Scholar 

  • Kobayashi, C., Kashimura, O., Maruyama, T., Oyanagi, M., Lau, I. C., Cudahy, T., Wheaton, B., & Carter, D. (2010). Method to reduce green and dry vegetation effects for soil mapping using hyperspectral data. International Archives of the Photogrammetry.

    Google Scholar 

  • Kruse, F. A., Kierein-Young, K. S., & Boardman, J. W. (1990). Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer. Photogrammetric Engineering and Remote Sensing, 56, 83–92.

    Google Scholar 

  • Laakso, K., Rivarda, B., & Rogge, D. (2016). Enhanced detection of gossans using hyperspectral data: Example from the Cape Smith Belt of northern Quebec, Canada. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 137–150.

    Article  Google Scholar 

  • Murphy, R. (1995). The effects of surficial vegetation cover on mineral absorption feature parameters. International Journal of Remote Sensing, 16, 2153–2164.

    Article  Google Scholar 

  • Murphy, R., & Wadge, G. (1994). The effects of vegetation on the ability to map soils using imaging spectrometer data. Remote Sensing, 15, 63–86.

    Article  Google Scholar 

  • Nanni, M. R., & Damette, J. A. M. (2006). Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70, 393–407.

    Article  Google Scholar 

  • Refahi, D., Khakzad, N., Nezafati, N., Bahar Firozi, K., & Bayatani, A. (2014). Altration zone studies north of Sarab by sateillite data, airborne geophisic data and sampling analysis. Geosciences, 24, 221–234.

    Google Scholar 

  • Rodger, A., Laukamp, C., Haest, M., & Cudahy, T. (2012). A simple quadratic method of wavelength tracking for absorption features in continuum removed spectra. Remote Sensing of Environment, 118, 273–283.

    Article  Google Scholar 

  • Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998). Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267–279.

    Article  Google Scholar 

  • Rodger, A., & Cudahy, T. (2009). Vegetation corrected continuum depths at 2.20 μm: An approach for hyperspectral sensors. Remote Sensing of Environment, 113, 2243–2257.

    Article  Google Scholar 

  • Siegel, F. R., & Goetz, A. (1977). Effect of vegetation on rock and soil discrimination. Engineering Geology, 43, 191–196.

    Google Scholar 

  • Staenz K, Nadeau C, Secker J, & Budkewitsch P (2000) Spectral unmixing applied to vegetated environments in the Canadian arctic for mineral mapping. In Proceedings of XIX ISPRS Congress, Amsterdam, The Netherlands, 16–22 XXXIII, Part B7, 1464–1471

  • Salehi S, Karami M, & Fensholt R (2016) Identification of a robust lichen index for the deconvolution of lichen and rock mixtures using pattern search algorithm (case study: Greenland), I The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016, XLI-B7, 973-979, https://doi.org/10.5194/isprs-archives-XLI-B7-973-2016.

  • Salehi, S., Rogge, D., Rivard, B., Heincke, B. H., & Fensholt, R. (2017). Modeling and assessment of wavelength displacements of characteristic absorption features of common rock forming minerals encrusted by lichens. Remote Sensing of Environment, 199, 78–92.

    Article  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 36, 1627–1638.

    Article  Google Scholar 

  • Simpson, M. P., & Rae, A. J. (2018). Short-wave infrared (SWIR) reflectance spectrometric characterisation of clays from geothermal systems of the Taupō Volcanic Zone, New Zealand. Geothermics, 73, 74–90.

    Article  Google Scholar 

  • Shi, C., Ding, X., Liu, Y., & Zhou, X. (2018). Reflectance spectral features and significant minerals in kaishantun ophiolite suite, Jilin province, NE China. Minerals, 8, 1–19.

    Google Scholar 

  • van der Meer, F. D., van der Werf, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. D., & Woldai, T. (2012). Multi and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128.

    Article  Google Scholar 

  • van Ruitenbeek, F. J. A., Debba, P., van der Meer, F. D., Cudahy, T., van der Meijde, M., & Hale, M. (2006). Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sensing of Environment, 102, 211–222.

    Article  Google Scholar 

  • Whiting ML, & Ustin SL (2001) Correlating AVIRIS imagery to field sampling and spectrometer measurements for inorganic soil carbon. 10th JPL Airborne Earth Science Workshop. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, February 26 – March 1.

  • Zhang, G. Y., Wasyliuk, K., & Pan, Y. M. (2001). The characterization and quantitative analysis of clay minerals in the Athabasca Basin, Saskatchewan: Application of shortwave infrared reflectance spectroscopy. The Canadian Mineralogist, 39, 1347–1363.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to specially thank the organization of Geological Survey and Mineral Exploration of Iran and Mr. Ali Bayatani for giving useful information about geology of the study area. The authors also express special thanks to Mr. Saham Mirzaei for his help in spectrometry data analysis.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AS conducted the analysis. ADB managed the research. AAK helped in mineralogy part. SKA helped in soil and vegetation study. SH provided help in soil and vegetation study.

Corresponding author

Correspondence to Ali Darvishi Boloorani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, A., Darvishi Boloorani, A., Abdollahi Kakroodi, A. et al. Removing the Vegetation Effect in Mineral Maps Produced by Hyperion. J Indian Soc Remote Sens 49, 1811–1821 (2021). https://doi.org/10.1007/s12524-021-01352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01352-3

Keywords

Navigation