Skip to main content
Log in

Study on heat conduction and adsorption/desorption characteristic of MIL-101/few layer graphene composite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Aiming at the poor heat conduction performance of porous MIL-101 applied in adsorption cooling process, few layer graphene (FLG) was selected as a promising thermal conductive additive to enhance thermal conductivity of MIL-101. The factors which influencing thermal conductivity of MIL-101/FLG composites were investigated. Thermal conductive mechanism of FLG for MIL-101 was discussed. Adsorption/desorption characteristics of water on the MIL-101/FLG composites were determined. Results show a two-dimensional structure of FLG with no defects and high degree of order is beneficial to the improvement of thermal conductivity for MIL-101/FLG composites. At 30 °C and bulk density of 0.55 g/cm3, thermal conductivity of MIL-101/20%FLG and MIL-101/25%FLG composite is 6.5 and 11.3 times higher than that of MIL-101. Thermal conductivity of MIL-101/FLG composites is related to the alignment direction of FLG and test direction of heat flow, and the interfacial thermal resistance between MIL-101 and FLG. Adding FLG in the MIL-101/FLG composites does not affect adsorption/desorption mechanism of water on the MIL-101. The addition of FLG can strengthen mass transfer and thermal diffusion process on the surface of MIL-101. Adsorption rate constant of water on the MIL-101/25%FLG composite is 2.05 times higher than that of MIL-101. The desorption temperatures and desorption activation energies of water on MIL-101/20%FLG and MIL-101/25%FLG composites are lower than those of MIL-101. It can provide basic research for the development of new adsorption water chiller working pair (MIL-101/FLG–water) with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

SCP:

Specific cooling power (W/kg)

COP:

Coefficient of performance

λ:

Thermal conductivity (W/(m K))

P0 :

Total heat output from the sensor (J)

τ:

Characterized time ratio

D (τ):

Dimension-less time-dependent function equation

∆Tave (τ):

Temperature rise of probe (K)

r:

Radius of sensor (mm)

t:

Time measured from the start of the transient recording (s)

θ:

Characterized testing time (s)

wt:

Mass fraction (%)

v:

Volume fraction (%)

p:

Vapor pressure (Pa)

p0 :

Saturated vapor pressure (Pa)

q:

Equilibrium adsorption uptake of water (g/gads)

q0 :

Maximum adsorption uptake of water (g/gads)

ε:

Adsorption potential (J/mol)

E:

Characteristic parameters of a specific adsorbate-adsorbent system

n:

Characteristic parameters of a specific adsorbate-adsorbent system

T:

Adsorption temperature (K)

Q:

Isosteric heat of adsorption (J/mol)

C:

Model parameter

F:

Coverage degree

w:

Instantaneous adsorption uptake (g/gads)

W:

Equilibrium adsorption uptake (g/gads)

k:

Adsorption rate constant (min1)

t:

Adsorption time (min)

Ed :

Desorption activation energy (kJ/mol)

Tm :

Desorption peak temperature (K)

φ:

Heating rate (K/min)

R:

Gas constant (8.314 J/(mol K)

max:

Maximum

min:

Minimum

s:

Saturated

ads:

Adsorbent

in:

Initial

d:

Desorption

m:

Middle

References

  1. D.G. Schmidt, Research opportunities for future energy technologies. ACS Energy Lett. 1, 244–245 (2016)

    Article  CAS  Google Scholar 

  2. F. Shabir, M.S. Eng, T. Miyazaki, B.B. Saha, A. Askalany, I. Ali, Y.G. Zhou, R. Ahma, R.R. Shamshiri, Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 119, 109630 (2020)

    Article  CAS  Google Scholar 

  3. J. Zheng, D. Barpaga, O.Y. Gutierrez, N.D. Browning, B.L. Mehdi, O.K. Farha, J.A. Lercher, B.P. McGrail, R.K. Motkuri, Exceptional fluorocarbon uptake with mesoporous metal-organic frameworks for adsorption-based cooling systems. ACS Appl. Energy Mater. 1, 5853–5858 (2018)

    Article  Google Scholar 

  4. A. Alahmer, S. Ajib, Solar cooling technologies: state of art and perspectives. Energy Convers. Manage. 214, 112896 (2020)

    Article  Google Scholar 

  5. Q.W. Pan, J.J. Peng, H.B. Wang, H.Q. Sun, R.Z. Wang, Experimental investigation of an adsorption air-conditioner using silica gel–water working pair. Sol. Energy 185, 64–71 (2019)

    Article  CAS  Google Scholar 

  6. Q.W. Pan, R.Z. Wang, L.W. Wang, D. Liu, Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application. Sol. Energy 172, 24–31 (2018)

    Article  CAS  Google Scholar 

  7. A. Chakraborty, B.B. Saha, S. Koyama, C.N. Kim, K. Srinivasan, Adsorption thermodynamics of silica gel-water systems. J. Chem. Eng. Data 54, 448–452 (2009)

    Article  CAS  Google Scholar 

  8. M.M. Younes, I.I. El-sharkawy, A.E. Kabeel, K. Uddin, A. Pal, S. Mitra, K. Thu, B.B. Saha, Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications. Int. J. Refrig. 98, 161–170 (2019)

    Article  CAS  Google Scholar 

  9. M.R. Manila, S. Mitra, P. Dutta, Studies on dynamics of two-stage air cooled water/silica gel adsorption system. Appl. Therm. Eng. 178, 115552 (2020)

    Article  CAS  Google Scholar 

  10. D.C. Wang, Z.Z. Xia, J.Y. Wu, Design and performance prediction of a novel zeolite-water adsorption air conditioner. Energy Convers. Manage. 47, 590–610 (2006)

    Article  Google Scholar 

  11. V. Brancato, A. Frazzica, Characterisation and comparative analysis of zeotype water adsorbents for heat transformation applications. Sol. Energy Mat. Sol. C 180, 91–102 (2018)

    Article  CAS  Google Scholar 

  12. A. Myat, N.K. Choon, K. Thu, Y.D. Kim, Experimental investigation on the optimal performance of Zeolite-water adsorption chiller. Appl. Energy 102, 582–590 (2013)

    Article  CAS  Google Scholar 

  13. W.B.T. How, A. Chakraborty, B. Han, Water adsorption on CHA and AFI types zeolites: modelling and investigation of adsorption chiller under static and dynamic conditions. Appl. Therm. Eng. 127, 35–45 (2017)

    Article  Google Scholar 

  14. S.W. Du, X.H. Li, Z.X. Yuan, C.X. Du, W.C. Wang, Z.B. Liu, Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite. Sol. Energy 138, 98–104 (2016)

    Article  CAS  Google Scholar 

  15. F.N. Al-Mousawi, R. Al-Dadah, S. Mahmoud, Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials. Energy Convers. Manage. 126, 373–384 (2016)

    Article  CAS  Google Scholar 

  16. E. Elsayed, R. Al-Dadah, S. Mahmoud, A. Elsayed, P.A. Anderson, Aluminium fumarate and CPO-27 (Ni) MOFs: characterization and thermodynamic analysis for adsorption heat pump applications. Appl. Therm. Eng. 99, 802–812 (2016)

    Article  CAS  Google Scholar 

  17. M.V. Solovyeva, L.G. Gordeeva, T.A. Krieger, Y.I. Aristov, MOF-801 as a promising material for adsorption cooling: equilibrium and dynamics of water adsorption. Energy Convers. Manage. 174, 356–363 (2018)

    Article  CAS  Google Scholar 

  18. R.G. AbdulHalim, P.M. Bhatt, Y. Belmabkhout, A. Shkurenko, K. Adil, L.J. Barbour, M. Eddaoudi, A fine-tuned metal-organic framework for autonomous indoor moisture control. J. Am. Chem. Soc. 139, 10715–10722 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. A. Khutia, H.U. Rammelberg, T. Osterland, S.K. Henninger, C. Janiak, Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 25, 790–798 (2013)

    Article  CAS  Google Scholar 

  20. Z.B. Liu, B.H. Zhao, L.Q. Zhu, F.F. Lou, J.W. Yan, Performance of MIL-101 (Cr)/water working pair adsorption refrigeration system based on a new type of adsorbent filling method. Materials 13, 195–211 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  21. R. Al-Dadah, S. Mahmoud, E. Elsayed, P. Youssef, F. Al-Mousawi, Metal-organic framework materials for adsorption heat pumps. Energy 190, 116356 (2020)

    Article  CAS  Google Scholar 

  22. Z.Q. Rui, Q.G. Li, Q. Cui, H.Y. Wang, H.J. Chen, H.Q. Yao, Adsorption refrigeration performance of shaped MIL-101–water working pair. Chin. J. Chem. Eng. 22, 570–575 (2014)

    Article  CAS  Google Scholar 

  23. Z. Xu, Y. Yin, J.P. Shao, Y.R. Liu, L. Zhang, Q. Cui, H.Y. Wang, Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube. Energy 191, 116302 (2020)

    Article  CAS  Google Scholar 

  24. K. Fayazmanesh, S. Salari, M. Bahrami, Effective thermal conductivity modeling of consolidated sorption composites containing graphite flakes. Int. J. Heat Mass Transf. 115, 73–79 (2017)

    Article  CAS  Google Scholar 

  25. T.H. Eun, H.K. Song, J.H. Han, K.H. Lee, J.N. Kim, Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int. J. Refrig. 23, 64–73 (2000)

    Article  CAS  Google Scholar 

  26. X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge, T.F. Ishugah, Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int. J. Heat Mass Transf. 68, 435–443 (2014)

    Article  CAS  Google Scholar 

  27. K. Fayazmanesh, C. Mccague, M. Bahrami, Consolidated adsorbent containing graphite flakes for heat-driven water sorption cooling systems. Appl. Therm. Eng. 123, 753–760 (2017)

    Article  CAS  Google Scholar 

  28. H. Bahrehmand, M. Khajehpour, M. Bahrami, Finding optimal conductive additive content to enhance the performance of coated sorption beds: an experimental study. Appl. Therm. Eng. 143, 308–315 (2018)

    Article  CAS  Google Scholar 

  29. S.W. Yang, H.H. Kim, S. Narayanan, I.S. McKay, E.N. Wang, Dimensionality effects of carbon-based thermal additives for microporous adsorbents. Mater. Des. 85, 520–526 (2015)

    Article  CAS  Google Scholar 

  30. S.W. Yang, X.P. Huang, G. Chen, E.N. Wang, Three-dimensional graphene enhanced heat conduction of porous crystals. J. Porous Mater. 23, 1647–1652 (2016)

    Article  CAS  Google Scholar 

  31. K.C. Chan, C.Y.H. Chao, C.L. Wu, Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents. Int. J. Heat Mass Transf. 89, 308–319 (2015)

    Article  CAS  Google Scholar 

  32. D.A. Liu, J.J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, D.J. Siegel, MOF-5 composites exhibiting improved thermal conductivity. Int. J. Hydrogen Energy 37, 6109–6117 (2012)

    Article  CAS  Google Scholar 

  33. J.J. Purewal, D.A. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Mueller, D.J. Siegel, Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 116, 20199–20212 (2012)

    Article  CAS  Google Scholar 

  34. Y. Ming, H. Chi, R. Blaser, C.C. Xu, J. Yang, M. Veenstra, M. Gaab, U. Mueller, C. Uher, D.J. Siegel, Anisotropic thermal transport in MOF-5 composites. Int. J. Heat Mass Transf. 82, 250–258 (2015)

    Article  Google Scholar 

  35. M. Streza, O. Grad, M.D. Lazar, M. Depriester, S. Longuemart, A.H. Sahraoui, G. Blanita, D. Lupu, Hybrid MOFs-graphene composites: correlation between thermal transport and kinetics of hydrogen adsorption. Int. J. Heat Mass Transf. 143, 118539 (2019)

    Article  CAS  Google Scholar 

  36. X.J. Sun, D.F. Lv, Y.W. Chen, Y. Wu, Q.H. Wu, Q.B. Xia, Z. Li, Enhanced adsorption performance of aromatics on a novel chromium-based MIL-101@graphite oxide composite. Energy Fuel 31, 13985–13990 (2017)

    Article  CAS  Google Scholar 

  37. E. Elsayed, H.Y. Wang, P.A. Anderson, R. Al-Dadah, S. Mahmoud, H. Navarro, Y.L. Ding, J. Bowen, Development of MIL-101 (Cr)/GrO composites for adsorption heat pump applications. Microporous Mesoporous Mater. 244, 180–191 (2017)

    Article  CAS  Google Scholar 

  38. L.J. Ma, Z.Q. Rui, Q. Wu, H. Yang, Y. Yin, Z.J. Liu, Q. Cui, H.Y. Wang, Performance evaluation of shaped MIL-101–ethanol working pair for adsorption refrigeration. Appl. Therm. Eng. 95, 223–228 (2016)

    Article  CAS  Google Scholar 

  39. L.J. Ma, H. Yang, Q. Wu, Y. Yin, Z.J. Liu, Q. Cui, H.Y. Wang, Study on adsorption refrigeration performance of MIL-101–isobutane working pair. Energy 93, 786–794 (2015)

    Article  CAS  Google Scholar 

  40. S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991)

    Article  CAS  Google Scholar 

  41. L. Chen, X.S. Hou, N. Song, L.Y. Shi, P. Ding, Cellulose/graphene bioplastic for thermal management: enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Composites A 107, 189–196 (2018)

    Article  CAS  Google Scholar 

  42. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)

    Article  CAS  Google Scholar 

  43. H.X. Zhu, T.X. Fan, D. Zhang, Composite materials with enhanced conductivities. Adv. Eng. Mater. 18, 1174–1180 (2016)

    Article  CAS  Google Scholar 

  44. M. Jahan, Q.L. Bao, J.X. Yang, K.P. Loh, Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 132, 14487–14495 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. N.J. Foley, K.M. Thomas, P.L. Forshaw, D. Stanton, P.R. Norman, Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083–2089 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of the National Natural Science Foundation of China under contract No. 51476074 and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also acknowledge comments from the reviewers that help us to improve the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Cui or Haiyan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Shao, J., Zhang, L. et al. Study on heat conduction and adsorption/desorption characteristic of MIL-101/few layer graphene composite. J Porous Mater 28, 1197–1213 (2021). https://doi.org/10.1007/s10934-021-01074-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01074-4

Keywords

Navigation