Skip to main content
Log in

Development and application of a sediment connectivity index to small fluvial catchments: a case study in Arenoso stream, Córdoba, Argentina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Sedimentological connectivity is associated with the degree of linkage between sediment sources and downslope areas. In this study, a connectivity index is proposed to estimate the contribution of different parts of a basin as sources of sediments and to assess the pathway of sediment flux. A small granitic basin located on the eastern slope of the Comechingones Ranges (Córdoba Province, Argentina), was selected as a case study. The semi-quantitative connectivity index is defined by the equation CI = T + Dd + C–B, in which T is the variable toposequences that represents the types of storage and lateral links; Dd is the drainage density and it is used to evaluate the longitudinal links; C corresponds to the number of connections between channels of different order in a basin and it complements Dd in the longitudinal links analysis; and B connotes barriers associated with the number and type of disconnections in the drainage network, thus its sign is negative. From cartographic and field data, a detailed lithological–geomorphological survey was carried out; storage and toposequence types were described, and the barriers were classified according to the type, size, and position in the basin. The CI was determined for each secondary and main sub-basin of the Arenoso stream. Therefore, five connectivity classes were defined from the CI values obtained. This methodology allows arising acceptable results in research associated with the spatial heterogeneity of basin connectivity. The CI developed, in this first approach, showed satisfactory results and is applicable to analysis of small mountain basins, being based mainly on geological–geomorphological–hydrographic maps coupled with detailed fieldwork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andreazzini MJ (2015) Análisis de los procesos de ajuste en sistemas fluviales serranos-pedemontanos frente a cambios ambientales Cuenca del río Las Cañitas, Córdoba, Argentina. Universidad Nacional de Río Cuarto

    Google Scholar 

  • Andreazzini MJ, Degiovanni SB (2014) Geomorphology of paleosurfaces in the Sierras de Comechingones, Central Pampean Ranges, Argentina. In: Rabassa J, Ollier C (eds) Gondwana Landscapes in Southern South America. Springer, pp 305–330

    Chapter  Google Scholar 

  • Andreazzini J, Degiovanni S, Spalletti P, Irigoyen M (2014) Producción de sedimentos en una cuenca de Sierras Pampeanas, Córdoba, Argentina: Estimación para distintos escenarios. Aqua-LAC (UNESCO) 6(1):38–49

    Article  Google Scholar 

  • Andreazzini MJ, Degiovanni SB, Prieto RP, Tripaldi A, Luque ME (2020) Mallines en la Sierra de Comechingones, Sierras Pampeanas, Argentina. Caracterización geológico-geomorfológica y reconstrucción paleoambiental durante el Holoceno. Andean Geol 47:77–109

    Article  Google Scholar 

  • Benito ME (2018) Estudio de la conectividad hidrológica y sedimentológica en dos ambientes litológicos de la Cuenca del río Las Tapias, Cuenca alta del río Cuarto, Córdoba. Universidad Nacional de Río Cuarto

    Google Scholar 

  • Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. CATENA 75(3):268–277

    Article  Google Scholar 

  • Brierley GJ, Fryirs K, Jain V (2006) Landscape connectivity: the geographic basis of geomorphic applications. Area 38(2):165–174

    Article  Google Scholar 

  • Cantreul V, Bielders C, Calsamiglia A, Degré A (2018) How pixel size affects a sediment connectivity index in central Belgium. Earth Surf Process Landf 43:88–893

    Article  Google Scholar 

  • Carignano C (1999) Late Pleistocene to recent climate change in Córdoba Province, Argentina: geomorphological evidence. Quatern Int 57(58):117–134

    Article  Google Scholar 

  • Carignano C, Krölhing D, Degiovanni S, Cioccale M (2014) Geomorfología. In: Guereschi A (ed) Martino R. Relatorio XIX Congreso Argentino de Geología, pp 747–821

    Google Scholar 

  • Carling PA (2006) The hydrology and geomorphology of bedrock rivers. Geomorphology 82:1–3

    Article  Google Scholar 

  • Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small alpine catchments. Geomorphology 188:31–41

    Article  Google Scholar 

  • Chow VT (1959) Open-channel hydraulics. McGraw-Hill

    Google Scholar 

  • Costa CH, Giaccardi AD, González Díaz EF (1999) Palaeolandsurfaces and neotectonic analysis in the Southern Sierras Pampeanas. In: Smith BJ, Whalley WB, Warke PA (eds) Uplift, erosion and stability: perspectives on longterm landscape development. Geological Society

    Google Scholar 

  • Costa C, Lewis A, Ricci W, Johnson W, Halperin A (2018) Holocene activity and seismogenic capability of intraplate thrusts: Insights from the Pampean Ranges, Argentina. Tectonophysics 737:57–70

    Article  Google Scholar 

  • Croke J, Mockler S, Fogarty P, Takken I (2005) Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology 68:257–268

    Article  Google Scholar 

  • Degiovanni S, Villegas M, Ulla JP (2013) Análisis de la carga de fondo y dinámica de transporte en el río Cuarto, provincia de Córdoba, como base para una minería de áridos sustentable. Rev Asoc Geol Argentina 70(2):238–248

    Google Scholar 

  • Dickie J, Parsons A (2012) Eco-geomorphological processes within grasslands, shrublands and badlands in the semi-arid Karoo South Africa. Land Degrad Dev 23(6):534–547

    Article  Google Scholar 

  • Fagiano MR (2007) Geología y petrología del basamento cristalino de Las Albahacas, Sur de la Sierra de Comechingones. Universidad Nacional de Río Cuarto

    Google Scholar 

  • Francke T, Güntner A, Mamede G, Müller EN, Bronstert A (2008) Automated catena based discretization of landscapes for the derivation of hydrological modelling units. Int J Geogr Inf Sci 22:111–132

    Article  Google Scholar 

  • Fryirs KA (2013) (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surf Process Landf 38:30–46

    Article  Google Scholar 

  • Fryirs KA, Brierley GJ, Preston NJ, Spencer J (2007) Catchment-scale (dis) connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84:297–316

    Article  Google Scholar 

  • Gavriletea MD (2017) Environmental Impacts of Sand Exploitation. Analysis Sand Market Sustainab 9(1118):1–26

    Google Scholar 

  • Gay A, Cerdan O, Mardhel V, Desmet M (2016) Application of an index of sediment connectivity in a lowland area. J Soils Sediments 16:280–293

    Article  Google Scholar 

  • González Díaz EF (1981) Geomorfología. In: Irigoyen M (ed) Geología de la Provincia de San Luis. Relatorio VIII Congreso Geológico Argentino, pp 193–236

    Google Scholar 

  • Gordillo C, Lencinas A (1979) Sierras Pampeanas de Córdoba y San Luis segundo simposio de geología regional Argentina. Academia Nacional de Ciencias, pp 577–650

    Google Scholar 

  • Harvey AM (2002) Effective timescales of coupling within fluvial systems. Geomorphology 44:175–201

    Article  Google Scholar 

  • Hooke J (2003) Coarse sediment connectivity in channel river systems: a conceptual framework and methodology. Geomorphology 56:79–94

    Article  Google Scholar 

  • Iriondo M (1999) Climatic changes in the South American plains: records of a continent – scale oscillation. Quatern Int 57(58):93–112

    Article  Google Scholar 

  • Jordan TE, Zeitler P, Ramos V, Gleadow AJW (1989) Thermochronometric data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. J S Am Earth Sci 2(3):207–222

    Article  Google Scholar 

  • Kröhling D, Carignano C (2014) La estratigrafía de los depósitos sedimentarios cuaternarios. In: Martino R, Guereschi A (eds) Relatorio del XIX Congreso Geológico Argentino. Asociación Geológica Argentina, pp 673–724

    Google Scholar 

  • Lexartza-Artza I, Wainwright J (2009) Hydrological connectivity: linking concepts with practical implications. CATENA 79:146–152

    Article  Google Scholar 

  • Messenzehl K, Hoffmann T (2013) Modelling and mapping of sediment connectivity in alpine environments (Swiss National Park). In: geophysical research abstracts. European Geosciences Union General Assembly

    Google Scholar 

  • Messenzehl K, Hoffmann T, Dikau R (2014) Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park — linking geomorphic field mapping with geomorphometric modelling. Geomorphology 221:215–229

    Article  Google Scholar 

  • Miller JR, Lord ML, Villarroel LF, Germanoski D, Chambers JC (2012) Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes. Geomorphology 139:384–402

    Article  Google Scholar 

  • Peduzzi P (2014) Sand, rarer than one thinks. Environ Dev 11:208–218

    Article  Google Scholar 

  • Pinotti L, Coniglio J, Esparza A (2002) Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Aspero batholiths, Sierras Pampeanas de Córdoba, Argentina. J South Am Earth Sci 15:251–265

    Article  Google Scholar 

  • Pinotti L, Coniglio JE, D’Eramo F, Demartis M, Otamendi JE, Fagiano MR, Zambroni NE (2014) El magmatismo devónico: Geología del batolito de Cerro Áspero. In: Martino R, Guereschi A (eds) Relatorio XIX congreso argentino de geología. Asociación Geológica Argentina, pp 255–276

    Google Scholar 

  • Rabassa J, Carignano C, Cioccale M (2010) Gondwana paleosurfaces in Argentina: an introduction. Geociências 29(4):439–466

    Google Scholar 

  • Torres A, Brandt J, Lear K, Liu J (2017) A looming tragedy of the sand commons. Science 357(6355):970–971

    Article  Google Scholar 

  • UNEP (2019) Sand and sustainability: finding new solutions for environmental governance of global sand resources. United Nations Environment Programme

    Google Scholar 

  • Villegas M, Degiovanni S, Ulla JP (2006) Tipificación del comportamiento del sector sur de la cuenca del río Cuarto a través del análisis de variables morfológicas y sedimentológicas. Actas III Congreso Argentino Cuaternario y Geomorfol Tomo I:221–231

    Google Scholar 

  • Wester T, Wasklewicz T, Staley D (2014) Functional and structural connectivity within a recently burned drainage basin. Geomorphology 206:362–373

    Article  Google Scholar 

  • Wohl E, Rathburn S, Chignell S, Garrett K, Laurel D, Livers B, Patton A, Records R, Richards M, Schook DM, Sutfin NA, Wegener P (2017) Mapping longitudinal stream connectivity in the North St Vrain Creek Watershed Colorado. Geomorphology 277:171–181

    Article  Google Scholar 

  • WWF (2018) Impacts of sand mining on ecosystem structure Process and Biodiversity in Rivers. World Wide Fund for Nature

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the Secretaría de Ciencia y Técnica (Universidad Nacional de Río Cuarto) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) that supported this research. Furthermore, we acknowledge the reviewers of this work for their suggestions and comments to improve the content of this paper and the writing in English.

Funding

This research was supported by Secretaría de Ciencia y Técnica (Universidad Nacional de Río Cuarto) and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, grant number PICT 1552/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jimena Andreazzini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data transparency

All data as well as software application claims and comply with field standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreazzini, M.J., Degiovanni, S.B., Benito, M.E. et al. Development and application of a sediment connectivity index to small fluvial catchments: a case study in Arenoso stream, Córdoba, Argentina. Environ Earth Sci 80, 301 (2021). https://doi.org/10.1007/s12665-021-09585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09585-8

Keywords

Navigation