Skip to main content
Log in

Retrieval of suspended sediment concentration of the Chilika Lake, India using Landsat-8 OLI satellite data

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To monitor sediment variations in the Chilika Lake, the Landsat-8 OLI data was used to calibrate suspended sediment concentration (SSC) model. The relationship between remote sensing reflectance of OLI bands and in-situ measured SSC were used to develop new site-specific algorithms. Four different models were calibrated in this study for retrieval of SSC using in-situ observation and remote sensing reflectance of OLI data. The multiband linear regression model provided better result (R2 = 0.6) as compared to the single-band regression model (R2 = 0.45, polynomial; R2 = 0.38, exponential and R2 = 0.39, linear). The Landsat-8 OLI image shows spatiotemporal variations of SSC during pre and post-monsoon season (2013–15) in the lake. It is observed that the SSC variation is predominantly influenced by three factors: monsoon effect, wind-induced re-suspension of bottom sediments and influx of river water into the lake. It is also observed that due to the impact of severe tropical cyclone Phailin, there was a rapid increase of SSC in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avinash K, Jena B, Vinaya MS, Jayappa KS, Narayana AC, Bhat HG (2012) Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 Ocean Colour Monitor data. Egypt J Remote Sens Space Sci 15:67–81

    Google Scholar 

  • Barnes BB, Hu C, Kovach C, Silverstein RN (2015) Sediment plumes induced by the Port of Miami dredging: analysis and interpretation using Landsat and MODIS data. Remote Sens Environ 170:328–339

    Article  Google Scholar 

  • Bramha S, Panda UC, Bhatt K, Sahu BK (2008) Spatial variation in hydrological characteristics of Chilika—a coastal lagoon of India. Indian J Sci Technol 4:1–7

    Article  Google Scholar 

  • Brando V, Dekker A, Marks A, Qin Y, Oubelkheir K (2006) Chlorophyll and Suspended Sediment Assessment in a Macro-Tidal Tropical Estuary Adjacent to the Great Barrier Reef: Spatial and Temporal Assessment Using Remote Sensing. Technical Report 74, pp. 114. Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, Canberra

  • CDA (2012) Chilika: an integrated management planning framework for conservation and wise use. Wetland International-South Asia and Chilika Development Authority, pp 1–161

  • Chen Z, Hu C, Muller-Karger F (2007) Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens Environ 109(2):207–220

    Article  Google Scholar 

  • Chen S, Huang W, Chen W, Chen X (2011a) An enhanced MODIS remote sensing model for detecting rainfall effects on sediment plume in the coastal waters of Apalachicola Bay. Mar Environ Res 72(5):265–272

    Article  Google Scholar 

  • Chen S, Huang W, Chen W, Wang H (2011b) Remote sensing analysis of rainstorm effects on sediment concentrations in Apalachicola Bay, USA. Eco Inform 6(2):147–155

    Article  Google Scholar 

  • Concha JA, Schott JR (2016) Retrieval of color producing agents in case 2 waters using Landsat-8. Remote Sens Environ 185:95–107

    Article  Google Scholar 

  • Danbara TT (2014) Deriving water quality indicators of Lake Tana, Ethiopia from Landsat-8. M.Sc. Thesis, University of Twente, The Netherlands

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43(2):86–94

    Article  Google Scholar 

  • Dogliotti AI, Ruddick KG, Nechad B, Doxaran D, Knaeps E (2015) A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters. Remote Sens Environ 156:157–168

    Article  Google Scholar 

  • Doxaran D, Froidefond JM, Lavender S, Castaing P (2002) Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens Environ 81(1):149–161

    Article  Google Scholar 

  • Doxaran D, Froidefond JM, Castaing P, Babin M (2009) Dynamics of the turbidity maximum zone in a macro-tidal estuary (the Gironde, France): observation from field and MODIS satellite data. Estuar Coast Shelf Sci 81(3):321–332

    Article  Google Scholar 

  • Emiyati (2016) Retrieval of Chlorophyll-a and suspended sediment concentration using Landsat-8 OLI in Lampung Bay, Indonesia. Post Graduate Diploma Thesis, Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP), IIRS, Dehradun

  • Emiyati, Manoppo AKS, Budhiman S (2017) Estimation on the concentration of total suspended matter in Lombok Coastal using Landsat-8 OLI, Indonesia. IOP Conf Ser Earth Environ Sci 54:012073

    Article  Google Scholar 

  • Froidefond J, Castaing P, Mirmand M, Ruch P (1991) Analysis of the turbid plume of the Gironde (France) based on SPOT radiometric data. Remote Sens Environ 36(3):149–163

    Article  Google Scholar 

  • Giovanni runoff data (2015) https://giovanni.gsfc.nasa.gov.giovanni/. Accessed 25 Nov 2015

  • Gupta GVM, Sarma VVSS, Robin RS, Raman AV, Kumar M, Rakesh M, Subramanian BR (2008) Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry 87(3):265–285

    Article  Google Scholar 

  • Guzman VR, Santaella FG (2009) Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay. Int J Syst Appl Eng Dev 3(1):36–44

    Google Scholar 

  • Hariyanto T, Krisna TC, Khomsin K, Pribadi CB, Anwar N (2017) Development of total suspended sediment model using Landsat-8 OLI and in-situ data at the Surabaya Coast, East Java, Indonesia. Indones J Geogr 49(1):73–79

    Article  Google Scholar 

  • Hu C, Chen Z, Clayton TD, Swarnzenski P, Brock JC, Muller-Karger FE (2004) Assessment of estuarine water quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida. Remote Sens Environ 93(3):423–441

    Article  Google Scholar 

  • IMD (2015) Precipitation data (2006–15). https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. Accessed 12 Nov 2015

  • Jally SK, Mishra AK, Balabantaray SK (2020) Estimation of Trophic State Index of Chilika Lake using Landsat-8 OLI and LISS III satellite data. Geocarto Int 35(7):759–780

    Article  Google Scholar 

  • Jayaraman G, Rao AD, Dube A, Mohanty PK (2005) Numerical simulation of circulation and salinity structure in Chilika Lagoon. J Coastal Res 23(4):861–877

    Google Scholar 

  • Krivtsov V, Howarth MJ, Jone SE (2009) Characterizing observed patterns of suspended particulate matter and relationships with oceanographic and meteorological variables: Studies in Liverpool Bay. Environ Model Softw 24(6):677–685

    Article  Google Scholar 

  • Kumar A, Equeenuddin SM, Mishra DR, Acharya BC (2016) Remote monitoring of sediment dynamics in a coastal lagoon: long-term spatio-temporal variability of suspended sediment in Chilika. Estuar Coast Shelf Sci 170:155–172

    Article  Google Scholar 

  • Lymburner L, Botha E, Hestir E, Anstee J, Sagar S, Dekker A, Malthus T (2016) Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens Environ 185:108–118

    Article  Google Scholar 

  • Martin JM, Windom HL (1991) Present and future roles of ocean margins in regulating marinebiogeochemical cycles of trace elements. In: Mantoura RFC, Martin JM, Wollast R (eds) Ocean margin processes in global change. Wiley, New Jersey

    Google Scholar 

  • May CL, Koseff JR, Lucas LV, Cloern JE, Schoellhamer DH (2003) Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Mar Ecol Prog Ser 254:111–128

    Article  Google Scholar 

  • Mayer LM, Keil RG, Macko SA, Joye SB, Ruttenberg KC, Aller RC (1998) The importance of suspended particulates in riverine delivery of bioavailable nitrogen to coastal zones. Global Biogeochem Cycles 12(4):573–579

    Article  Google Scholar 

  • Miller RL, McKee BA (2004) Using MODIS 250 m imagery to map concentration of total suspended matter in coastal waters. Remote Sens Environ 93:259–266

    Article  Google Scholar 

  • Miller RL, McKee BA, D’sa EJ (2007) Monitoring bottom sediment resuspension and suspended sediments in shallow coastal waters. In: Miller RL, Del Castillo CE, McKee BA (eds) Remote sensing of coastal aquatic environments. Remote sensing and digital image processing, vol 7. Springer, Dordrecht, pp 259-276

    Chapter  Google Scholar 

  • Mishra AK (2004) Retrieval of suspended sediment concentration in the estuarine waters using IRS-1C WiFS data. Int J Appl Earth Observ Geoinf 6(2):83–95

    Google Scholar 

  • Mishra AK, Garg N (2011) Analysis of Trophic State Index of Nainital Lake from Landsat-7 ETM data. J Indian Soc Remote Sens 39(4):463–471

    Article  Google Scholar 

  • Mishra DR, Mishra S (2010) Plume and bloom: effect of Mississippi river diversion on the water quality of Lake Pontchartrain. Geocarto Int 25(7):555–568

    Article  Google Scholar 

  • Mohanty PK, Pal SR (2001) IRS data utilization for estimation of turbidity level in Chilika lagoon, east coast of India. In: Proceedings of 22nd Asian Conference on Remote Sensing, 5–9 November 2001, Singapore

  • Mohanty PK, Panda BUS (2009) Circulation and mixing processes in Chilika lagoon. Indian J Mar Sci 38(2):205–214

    Google Scholar 

  • Moore GF, Aiken J, Lavender SJ (1999) The atmospheric correction of watercolour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS. Int J Remote Sens 20(9):1713–1733

    Article  Google Scholar 

  • Moreno-Madrinan MJ, Al-Hamdan MZ, Rickman DL, Muller-Karger FE (2010) Using the surface reflectance MODIS terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens 2(12):2713–2728

    Article  Google Scholar 

  • Muduli PR, Kanuri VV, Robin RS, Kumar BC, Patra S, Raman AV, Rao GN, Subramanian BR (2012) Spatiotemporal variation of CO2 emission from Chilka Lake, a trophical coastal lagoon, on the east coast of India. Estuar Coast Shelf Sci 113:305–313

    Article  Google Scholar 

  • Nayak BK, Acharya BC, Panda UC, Nayak BB, Acharya SK (2004) Variation of water quality in Chilika Lake, Orissa. Indian J Mar Sc 33(2):164–169

    Google Scholar 

  • Olmanson LG, Brezonik PL, Finlay JC, Bauer ME (2016) Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens Environ 185:119–128

    Article  Google Scholar 

  • Ouillon S, Douillet P, Petrenko A, Neveux J, Dupouy C, Froidefond J, Andrefouet S, Munoz-Caravaca A (2008) Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors 8(7):4165–4185

    Article  Google Scholar 

  • Panda US, Mohanty PK (2008) Monitoring and Modeling of Chilika Environment Using Remote Sensing Data. In: Proceedings of Taal 2007: The 12th World Lake Conference, pp 617–638

  • Panda US, Mohanty PK, Pal SR, Mohapatra GN, Mishra P, Jayaraman G (2008) Mapping lagoonal features and their variability: field observations and remote sensing implications. In: Mohanty PK (ed) Monitoring and modelling lakes and coastal environments. Springer Dordrecht, Netherlands, pp 198–225

    Chapter  Google Scholar 

  • Panigrahi S, Acharya BC, Panigrahy RC, Nayak BK, Banarjee K, Sarkar SK (2007) Anthropogenic impact on water quality of Chilika lagoon RAMSAR site: a statistical approach. Wetlands Ecol Manage 15:113–126

    Article  Google Scholar 

  • Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology 10(2):73–85

    Article  Google Scholar 

  • Pathak VN, Pandya MR, Shah DB, Trivedi HJ (2018) Development of scheme for the atmospheric correction of Landsat-8 OLI data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, pp. 671–673, ISPRS TC V Mid-term Symposium “Geospatial Technology - Pixel to People”

  • Pattanaik S (2007) Conservation of environment and protection of marginalized fishing communities of Lake Chilika Lake in Orissa. India J Hum Ecol 22(4):291–302

    Google Scholar 

  • Qu L (2014) Remote Sensing Suspended Sediment Concentration in the Yellow River. Ph.D. Thesis, University of Connecticut

  • Ritchie JC, Cooper CM (1988) Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data. Int J Remote Sens 9(3):379–387

    Article  Google Scholar 

  • Ritchie JC, Schiebe FR, McHenry JR (1976) Remote sensing of suspended sediments in surface waters. Photogramm Eng Remote Sens 42:1539–1545

    Google Scholar 

  • Ruddick K, Park Y, Nechad B (2003) MERIS imagery of Belgian coastal waters: Mapping of suspended particulate matter and chlorophyll-a. MERIS user workshop, 10–13th November 2003, ESA Special Publication SP-549

  • Schiebe FR, Harringtonm JA, Ritchie JC (1992) Remote sensing of suspended sediments: the Lake Chicot, Arkansas project. Int J Remote Sens 13(8):1487–1509

    Article  Google Scholar 

  • Sharma A, Ranga MM, Sharma PC (2010) Water quality status of historical Gundolav Lake at Kishangarh as a primary data for sustainable management. South Asian J Tour Herit 3(2):149–158

    Google Scholar 

  • Shen F, Verhoef W, Zhou Y, Salama MS, Liu X (2010) Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuar Coasts 33(6):1420–1429

    Article  Google Scholar 

  • Shi K, Zhang Y, Zhu G, Liu X, Zhou Y, Xu H, Qin B, Liu G, Li Y (2015) Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens Environ 164:43–56

    Article  Google Scholar 

  • Siddiqi SZ, Rama Rao KV (1995) Fauna of Chilika Lake: limnology, zoological survey of India. Wetl Ecosyst Ser 1:11–136

    Google Scholar 

  • Slonecker ET, Jones DK, Pellerin BA (2016) The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Mar Pollut Bull 107(2):518–527

    Article  Google Scholar 

  • Tassan S (1994) Local algorithms using SeaWiFS data for retrieval of phytoplankton pigment, suspended sediments and yellow substance in coastal waters. Appl Opt 33(12):2369–2378

    Article  Google Scholar 

  • USGS (2015) https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product. Accessed 12 Nov 2015

  • USGS earth explorer (2015) Landsat-8. http://earthexplorer.usgs.gov. Accessed 12 Nov 2015

  • Wang J, Lu XX, Liew SC, Zhou Y (2009) Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth SurfProcess Landf 34:1082–1092

    Article  Google Scholar 

  • Wu G, Cui L, Liu L, Chen F, Fei T, Liu Y (2015) Statistical model development and estimation of suspended particulate matter concentrations with Landsat-8 OLI images of Dongting Lake, China. Int J Remote Sens 36(1):343–360

    Article  Google Scholar 

  • Yepez S, Laraque A, Martinez JM, Sa JD, Carrera JM, Castellanos B, Gallay M, Lopez JL (2017) Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). CR Geosci 350:20–30

    Article  Google Scholar 

  • Zhang Y, Lin S, Liu J, Qian X, Ge Y (2010) Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China). Int J Environ Res Public Health 7(9):3545–3560

    Article  Google Scholar 

  • Zhang M, Dong Q, Cui T, Xue C, Zhang S (2014) Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery. Remote Sens Environ 146:136–147

    Article  Google Scholar 

  • Zhao H, Chen Q, Walker ND, Zheng Q, MacIntyre HL (2011) A study of sediment transport in a shallow estuary using MODIS imagery and particle tracking simulation. Int J Remote Sens 32(21):6653–6671

    Article  Google Scholar 

  • Zhou W, Wang S, Zhou Y, Troy A (2006) Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int J Remote Sens 27(6):1177–1191

    Article  Google Scholar 

Download references

Acknowledgements

The authors are acknowledging the financial assistance supported by the University Grants Commission (UGC), Government of India in terms of Research Fellowship. We are also grateful to Director, IIRS for providing all support and encouragement to carry out research activity. Authors are thankful to Shaik Darga Saheb and Joseph Yarragunta, Senior Research Fellow, Marine and Atmospheric Sciences Department, IIRS, Dehradun. The authors wish to thank Dr. Namita Pattnaik, Associate Professor, School of Geography, Gangadhar Meher University, Sambalpur, Odisha. We are also thankful to Dr. C. R. Panda, Scientist-G, Head, Department of Environment Sustainability, Institute of Minerals Material Technology (IIMT), CSIR, Bhubaneswar, Odisha for providing all support and laboratory facility to carry out research activity. The authors wish to thank the Earth Explorer (USGS) support team for providing Landsat-8 OLI satellite data products. Authors, gratefully acknowledge Indian Meteorological Department (IMD) and NASA’s GIOVANNI for providing rainfall and run-off data. The authors are thankful to anonymous reviewers and editors for their insightful comments and suggestions which have helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Jally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jally, S.K., Mishra, A.K. & Balabantaray, S. Retrieval of suspended sediment concentration of the Chilika Lake, India using Landsat-8 OLI satellite data. Environ Earth Sci 80, 298 (2021). https://doi.org/10.1007/s12665-021-09581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09581-y

Keywords

Navigation