Skip to main content
Log in

Series Representation of Jointly S\(\alpha \)S Distribution via Symmetric Covariations

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

We introduce the notion of symmetric covariation, which is a new measure of dependence between two components of a symmetric \(\alpha \)-stable random vector, where the stability parameter \(\alpha \) measures the heavy-tailedness of its distribution. Unlike covariation that exists only when \(\alpha \in (1,2]\), symmetric covariation is well defined for all \(\alpha \in (0,2]\). We show that symmetric covariation can be defined using the proposed generalized fractional derivative, which has broader usages than those involved in this work. Several properties of symmetric covariation have been derived. These are either similar to or more general than those of the covariance functions in the Gaussian case. The main contribution of this framework is the representation of the characteristic function of bivariate symmetric \(\alpha \)-stable distribution via convergent series based on a sequence of symmetric covariations. This series representation extends the one of bivariate Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astrauskas, A., Lévy, J.B., Taqqu, M.S.: The asymptotic dependence structure of the linear fractional Lévy motion. Lith. Math. J. 31, 1–19 (1991)

    Article  Google Scholar 

  2. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  3. Ayache, A., Hamonier, J.: Linear fractional stable motion: a wavelet estimator of the \(\alpha \) parameter. Stat. Probab. Lett. 82, 1569–1575 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ayache, A., Hamonier, J.: Linear multifractional stable motion: wavelet estimation of \({H}(\cdot )\) and \(\alpha \) parameters. Lith. Math. J. 55, 159–192 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ayache, A., Hamonier, J.: Uniformly and strongly consistent estimation for the Hurst function of a linear multifractional stable motion. Bernoulli 23, 1365–1407 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)

    Book  Google Scholar 

  7. Byczkowski, T., Nolan, J.P., Rajput, B.: Approximation of multidimensional stable densities. J. Multivar. Anal. 46, 13–31 (1993)

    Article  MathSciNet  Google Scholar 

  8. Cambanis, S., Miller, G.: Linear problems in \(p\)th order and stable processes. SIAM J. Appl. Math. 41, 43–69 (1981)

    Article  MathSciNet  Google Scholar 

  9. Ciesielski, M., Blaszczyk, T.: The multiple composition of the left and right fractional Riemann–Liouville integrals—analytical and numerical calculations. Filomat 31, 6087–6099 (2017)

    Article  MathSciNet  Google Scholar 

  10. Damarackas, J., Paulauskas, V.: Properties of spectral covariance for linear processes with infinite variance. Lith. Math. J. 54, 252–276 (2014)

    Article  MathSciNet  Google Scholar 

  11. Damarackas, J., Paulauskas, V.: Asymptotic of spectral covariance for linear random fields with infinite variance (2016). arXiv:1601.03911

  12. Damarackas, J., Paulauskas, V.: Spectral covariance and limit theorems for random fields with infinite variance. J. Multivar. Anal. 153, 156–175 (2017)

    Article  MathSciNet  Google Scholar 

  13. Davydov, Y., Paulauskas, V.: On the estimation of the parameters of multivariate stable distributions. Acta Appl. Math. 58, 107–124 (1999)

    Article  MathSciNet  Google Scholar 

  14. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Garel, B., Kodia, B.: Signed symmetric covariation coefficient for alpha-stable dependence modeling. C.R. Math. 347, 315–320 (2009)

    Article  MathSciNet  Google Scholar 

  16. Herzallah, M.A.E.: Notes on some fractional calculus operators and their properties. J. Fract. Calculus Appl. 5(3S), 1–10 (2014)

    MathSciNet  Google Scholar 

  17. Hu, Y., Long, H.: Least squares estimator for Ornstein–Uhlenbeck processes driven by \(\alpha \)-stable motions. Stoch. Process. Appl. 119, 2465–2480 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kanter, M., Steiger, W.L.: Regression and autoregression with infinite variance. Adv. Appl. Probab. 6, 768–783 (1974)

    Article  MathSciNet  Google Scholar 

  19. Kodia, B., Garel, B.: Estimation and comparison of signed symmetric covariation coefficient and generalized association parameter for alpha-stable dependence modeling. Commun. Stat. Theory Methods 43, 5156–5174 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kokoszka, P.S., Taqqu, M.S.: Infinite variance stable ARMA processes. J. Time Ser. Anal. 15, 203–220 (1994)

    Article  MathSciNet  Google Scholar 

  21. Kokoszka, P.S., Taqqu, M.S.: Fractional ARIMA with stable innovations. Stoch. Process. Appl. 60, 19–47 (1995)

    Article  MathSciNet  Google Scholar 

  22. Lévy, P.: Calcul des Probabilités. Jacques Gabay, Paris (1925)

    MATH  Google Scholar 

  23. Malinowska, A.B., Odzijewicz, T., Torres, D.F.: Advanced Methods in the Fractional Calculus of Variations. Springer, Berlin (2015)

    Book  Google Scholar 

  24. Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calculus Appl. Anal. 14, 523–537 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Mandelbrot, B.B.: The variation of certain speculative prices. In: Fractals and Scaling in Finance, pp. 371–418. Springer (1997)

  26. McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat. Simul. Comput. 15, 1109–1136 (1986)

    Article  MathSciNet  Google Scholar 

  27. Miller, G.: Properties of certain symmetric stable distributions. J. Multivar. Anal. 8, 346–360 (1978)

    Article  MathSciNet  Google Scholar 

  28. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  29. Nolan, J.P.: Multivariate stable distributions: approximation, estimation, simulation and identification. In: A Practical Guide to Heavy Tails, pp. 509–525. Birkhäuser (1998)

  30. Nolan, J.P.: Modeling financial data with stable distributions. In: Handbook of heavy tailed distributions in finance, pp. 105–130. Elsevier (2003)

  31. Nolan, J.P.: Stable Distributions: Models for Heavy-Tailed Data. Birkhauser, New York (2003)

    Book  Google Scholar 

  32. Nolan, J.P., Panorska, A.K., McCulloch, J.H.: Estimation of stable spectral measures. Math. Comput. Modell. 34, 1113–1122 (2001)

    Article  MathSciNet  Google Scholar 

  33. Paulauskas, V.J.: Some remarks on multivariate stable distributions. J. Multivar. Anal. 6, 356–368 (1976)

    Article  MathSciNet  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  35. Press, S.J.: Multivariate stable distributions. J. Multivar. Anal. 2, 444–462 (1972)

    Article  MathSciNet  Google Scholar 

  36. Samorodnitsky, G., Taqqu, M.S.: Linear models with long-range dependence and with finite or infinite variance. In: New Directions in Time Series Analysis, pp. 325–340. Springer (1993)

  37. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  38. Stoev, S., Pipiras, V., Taqqu, M.S.: Estimation of the self-similarity parameter in linear fractional stable motion. Sig. Process. 82, 1873–1901 (2002)

    Article  Google Scholar 

  39. Stoev, S., Taqqu, M.S.: Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals 12, 95–121 (2004)

    Article  MathSciNet  Google Scholar 

  40. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-similarity through high-variability: statistical analysis of ethernet LAN traffic at the source level. IEEE/ACM Trans. Netw. 5, 71–86 (1997)

    Article  Google Scholar 

  41. Xu, W., Wu, C., Dong, Y., Xiao, W.: Modeling Chinese stock returns with stable distribution. Math. Comput. Modell. 54, 610–617 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Vygantas Paulauskas for very stimulating communications on measuring dependence between S\(\alpha \)S variables. The authors also thank the referee and the editor for their comments on the manuscript which lead to many improvements of the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujia Ding.

Appendix A. Proofs of Statements

Appendix A. Proofs of Statements

1.1 A.1. Proof of Lemma 2.4

Proof

For \(\beta \in {\mathbb {R}}_+\backslash {\mathbb {Z}}_+\), from (2.2) we write

$$\begin{aligned} {}_{a}^{m}\text {D}_x^\beta \left( |x-a|^{p}\right) =\mathbb {1}_{\{x\geqslant a\}}{}_a\widetilde{\text {D}}_x^\beta \left( |x-a|^{p}\right) +(-1)^{m}\mathbb {1}_{\{x<a\}}{}_x\widetilde{\text {D}}_a^\beta \left( |x-a|^{p}\right) .\nonumber \\ \end{aligned}$$
(A.1)

Let \(n=\lfloor \beta \rfloor +1\). On the one hand, if \(x\geqslant a\), taking the left Riemann–Liouville fractional derivative of the function \(x\mapsto |x-a|^{p}\), it yields

$$\begin{aligned}&{}_a\widetilde{\text {D}}_x^\beta \left( |x-a|^{p}\right) \nonumber \\&\quad =\frac{1}{\Gamma (n-\beta )}\frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}\int _a^x(t-a)^p(x-t)^{n-\beta +1}\, \mathrm {d}t\nonumber \\&\quad =\frac{1}{\Gamma (n-\beta )}\frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}\int _0^1(x-a)^p(1-\tau )^p(x-a)^{n-\beta -1}\tau ^{n-\beta -1}(x-a)\, \mathrm {d}\tau \nonumber \\&\quad =\frac{1}{\Gamma (n-\beta )}\left( \frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}(x-a)^{p+n-\beta }\right) \left( \int _0^1(1-\tau )^p\tau ^{n-\beta -1}\, \mathrm {d}\tau \right) \nonumber \\&\quad =\frac{B(n-\beta ,p+1)}{\Gamma (n-\beta )}\left( \frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}(x-a)^{p+n-\beta }\right) \nonumber \\&\quad =\frac{\Gamma (p+1)}{\Gamma (n-\beta +p+1)}\left( \frac{\Gamma (n-\beta +p+1)}{\Gamma (p-\beta +1)}(x-a)^{p-\beta }\right) \nonumber \\&\quad =\frac{\Gamma (p+1)}{\Gamma (p-\beta +1)}(x-a)^{p-\beta }. \end{aligned}$$
(A.2)

Here we have used the change of variables \(t=x-(x-a)\tau \) and the fact that the beta function B satisfies

$$\begin{aligned} B(x,y)=\frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)},~\text{ for } \text{ all }~x,y>0. \end{aligned}$$

On the other hand, if \(x<a\), the right Riemann–Liouville fractional derivative yields

$$\begin{aligned}&{}_x\widetilde{\text {D}}_a^\beta \left( |x-a|^{p}\right) \nonumber \\&\quad =(-1)^n\frac{1}{\Gamma (n-\beta )}\frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}\int _x^a(a-t)^p(t-x)^{n-\beta +1}\, \mathrm {d}t\nonumber \\&\quad =(-1)^n\frac{1}{\Gamma (n-\beta )}\frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}\int _0^1(a-x)^p(1-\tau )^p(a-x)^{n-\beta -1}\tau ^{n-\beta -1}(a-x)\, \mathrm {d}\tau \nonumber \\&\quad =\frac{(-1)^n}{\Gamma (n-\beta )}\left( \frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}(a-x)^{p+n-\beta }\right) \left( \int _0^1(1-\tau )^p\tau ^{n-\beta -1}\, \mathrm {d}\tau \right) \nonumber \\&\quad =\frac{(-1)^nB(n-\beta ,p+1)}{\Gamma (n-\beta )}\left( \frac{\, \mathrm {d}^n}{\, \mathrm {d}x^n}(a-x)^{p+n-\beta }\right) \nonumber \\&\quad =\frac{(-1)^n\Gamma (p+1)}{\Gamma (n-\beta +p+1)}\left( (-1)^n\frac{\Gamma (n-\beta +p+1)}{\Gamma (p-\beta +1)}(a-x)^{p-\beta }\right) \nonumber \\&\quad =\frac{\Gamma (p+1)}{\Gamma (p-\beta +1)}(a-x)^{p-\beta }. \end{aligned}$$
(A.3)

Here we have taken \(t=x+(a-x)\tau \). Therefore (2.4) holds for \(\beta \) being non-integer, by using (A.1), (A.2) and (A.3).

For \(\beta \in {\mathbb {Z}}_+\), by using (2.3) we write

$$\begin{aligned} {}_{a}^{m}\text {D}_x^\beta \left( |x-a|^{p}\right)= & {} \text {sign}^{m+n+1}(x-a)\frac{\, \mathrm {d}^\beta }{\, \mathrm {d}x^\beta }\left( |x-a|^{p}\right) \\= & {} \frac{\Gamma (p+1)}{\Gamma (p-\beta +1)}|x-a|^{p-\beta } \text {sign}^{m}(x-a), \end{aligned}$$

where \(n=\lfloor \beta \rfloor +1\). Hence (2.4) is obtained for all real numbers \(\beta \geqslant 0\). \(\square \)

1.2 A.2. Proof of Lemma 3.10

Proof

On the one hand, in view of Lemma 2.7.5 in [37], \(\varvec{Y}=(Y_1,Y_2)\) is also an S\(\alpha \)S random vector. On the other hand, considering \(\varvec{Y}=\left( \sum _{k=1}^{n}a_kX_k, \sum _{k=1}^{n}b_kX_k\right) \), we can rewrite the characteristic function as:

$$\begin{aligned}&{\mathbb {E}}\exp \{i(\theta _1Y_1+\theta _2Y_2)\}\nonumber \\&\quad ={\mathbb {E}}\exp \left\{ i\sum _{k=1}^{n}(\theta _1a_k +\theta _2b_k)X_k\right\} \nonumber \\&\quad =\exp \left\{ -\int _{S_n}\left| \theta _1\sum _{k=1}^{n}a_ks_k +\theta _2\sum _{k=1}^{n}b_ks_k\right| ^{\alpha }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\right\} . \end{aligned}$$

Now we want to show

$$\begin{aligned} \int _{S_n}\left| \theta _1\sum _{k=1}^{n}a_ks_k+\theta _2\sum _{k=1}^{n}b_ks_k \right| ^{\alpha }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})=\int _{S_2}|\theta _1t_1+\theta _2t_2|^{\alpha }\varvec{\varGamma }(\, \mathrm {d}\varvec{t}), \end{aligned}$$
(A.4)

with \(\varvec{\varGamma }=\widehat{\varvec{\varGamma _{X}}}\circ h^{-1}\). To verify the above equation, we first write

$$\begin{aligned} \int _{S_2}|\theta _1t_1+\theta _2t_2|^{\alpha }\varvec{\varGamma }(\, \mathrm {d}\varvec{t})= & {} \int _{S_2}|\theta _1t_1+\theta _2t_2|^{\alpha }\widehat{\varvec{\varGamma _{X}}} (\, \mathrm {d}(h^{-1}(\varvec{t}))). \end{aligned}$$

Then applying Lemma 3.9, we have

$$\begin{aligned}&\int _{S_2}|\theta _1t_1+\theta _2t_2|^{\alpha }\widehat{\varvec{\varGamma _{X}}}(\, \mathrm {d}(h^{-1}(\varvec{t})))\nonumber \\&\quad =\int _{S_n}\left| \frac{\theta _1\sum _{k=1}^{n}a_ks_k+\theta _2\sum _{k=1}^nb_ks_k}{\big (\big (\sum _{k=1}^{n}a_ks_k\big )^{2}+\big (\sum _{k=1}^{n}b_ks_k\big )^{2}\big )^{1/2}}\right| ^{\alpha }\widehat{\varvec{\varGamma _{X}}}(\, \mathrm {d}\varvec{s})\nonumber \\&\quad =\int _{S_n}\left| \theta _1\sum _{k=1}^{n}a_ks_k+\theta _2\sum _{k=1}^{n}b_ks_k\right| ^{\alpha }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}). \end{aligned}$$

Therefore, (A.4) holds and hence \(\varvec{\varGamma }=\widehat{\varvec{\varGamma _{X}}}\circ h^{-1}\), denoted by \(\varvec{\varGamma _Y}\), is a spectral measure of Y. \(\square \)

1.3 A.3. Proof of Proposition 3.16

Proof

We first prove (i). By using Remark 3.3, we have

$$\begin{aligned}&[aX_1,bX_2]_{\alpha ,1,1}+[aX_1,bX_2]_{\alpha ,\alpha -1,1}\\&=\int _{\{(s_1,s_2)\in S_2:~|as_1|\leqslant |bs_2|\}} \left( as_1\right) ^{\langle 1\rangle }\left( bs_2\right) ^{\langle \alpha -1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\\&\qquad +\int _{\{(s_1,s_2)\in S_2:~|as_1|>|bs_2|\}} \left( as_1\right) ^{\langle \alpha -1\rangle }\left( bs_2\right) ^{\langle 1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\\&\qquad +\int _{\{(s_1,s_2)\in S_2:~|as_1|\leqslant |bs_2|\}} \left( as_1\right) ^{\langle \alpha -1\rangle }\left( bs_2\right) ^{\langle 1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\\&\qquad +\int _{\{(s_1,s_2)\in S_2:~|as_1|>|bs_2|\}} \left( as_1\right) ^{\langle 1\rangle }\left( bs_2\right) ^{\langle \alpha -1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\\&\quad =\int _{S_2} \left( as_1\right) ^{\langle 1\rangle }\left( bs_2\right) ^{\langle \alpha -1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})+\int _{S_2} \left( as_1\right) ^{\langle \alpha -1\rangle }\left( bs_2\right) ^{\langle 1\rangle }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\\&\quad =ab^{\langle \alpha -1\rangle }[X_1,X_2]_{\alpha }+ba^{\langle \alpha -1\rangle }[X_2,X_1]_{\alpha }. \end{aligned}$$

Here in the last equality we have used the fact that \(s_1^{\langle 1\rangle }=s_1\) for all \(s_1\in {\mathbb {R}}\). Hence (3.8) is proved.

Next we prove (ii). Using (3.8), the following system of linear equations holds:

$$\begin{aligned} \left\{ \begin{array}{ll} &{}a_1b_1^{\langle \alpha -1\rangle }[X_1,X_2]_{\alpha }+b_1a_1^{\langle \alpha -1\rangle }[X_2,X_1]_{\alpha }=[a_1X_1,b_1X_2]_{\alpha ,1,1}+[a_1X_1,b_1X_2]_{\alpha ,\alpha -1,1}, \\ &{}a_2b_2^{\langle \alpha -1\rangle }[X_1,X_2]_{\alpha }+b_2a_2^{\langle \alpha -1\rangle }[X_2,X_1]_{\alpha }=[a_2X_1,b_2X_2]_{\alpha ,1,1}+[a_2X_1,b_2X_2]_{\alpha ,\alpha -1,1}. \end{array}\right. \end{aligned}$$
(A.5)

Since \(a_1b_1^{\langle \alpha -1\rangle }b_2a_2^{\langle \alpha -1\rangle }\ne a_2b_2^{\langle \alpha -1\rangle }b_1a_1^{\langle \alpha -1\rangle }\), the solution of (A.5) is uniquely obtained as in (3.9). \(\square \)

1.4 A.4. Proof of Lemma 5.6

Proof

Assume \([X_1, X_2]_{\alpha , k, 1}=0\) for all \(k\in {\mathbb {Z}}\). Applying this assumption to Theorem 4.3, we have

$$\begin{aligned} \sigma ^\alpha _{\varvec{X}}(1, 1)=\sum _{k \text{ is } \text{ even }}\frac{(\alpha )_k}{k!}[X_1, X_2]_{\alpha , k, 0}={\widetilde{T}}_1+{\widetilde{T}}_2, \end{aligned}$$
(A.6)

where

$$\begin{aligned} {\widetilde{T}}_1=\sum _{k \text{ is } \text{ even }}\frac{(\alpha )_k}{k!}\int _{\{(s_1,s_2)\in S_2:~|s_1|\leqslant |s_2|\}}|s_1|^k|s_2|^{\alpha -k}\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}) \end{aligned}$$
(A.7)

and

$$\begin{aligned} {\widetilde{T}}_2=\sum _{k \text{ is } \text{ even }}\frac{(\alpha )_k}{k!}\int _{\{(s_1,s_2)\in S_2:~|s_1|>|s_2|\}}|\lambda s_1|^{\alpha -k}|s_2|^k\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}). \end{aligned}$$
(A.8)

From Proposition 4.2, we have that for all \(b\ne 0\) and all \(x\in [-|b|,|b|]\),

$$\begin{aligned} |x+b|^\alpha +|x-b|^\alpha= & {} \sum _{k=0}^{+\infty }\frac{(a)_k}{k!}|b|^{\alpha -k}\text {sign}^k(b)x^k+\sum _{k=0}^{+\infty }\frac{(a)_k}{k!}|b|^{\alpha -k}\text {sign}^k(-b)x^k\nonumber \\= & {} \sum _{k=0}^{+\infty }\frac{(a)_k}{k!}|b|^{\alpha -k}\text {sign}^k(b)x^k\left( 1+(-1)^k\right) \nonumber \\= & {} 2\sum _{k \text{ is } \text{ even }}\frac{(a)_k}{k!}|b|^{\alpha -k}\text {sign}^k(b)x^k\nonumber \\= & {} 2\sum _{k \text{ is } \text{ even }}\frac{(a)_k}{k!}|x|^k|b|^{\alpha -k}. \end{aligned}$$
(A.9)

It follows from (A.9), (A.7) and (A.8) that

$$\begin{aligned} {\widetilde{T}}_1=\frac{1}{2}\int _{\{(s_1,s_2)\in S_2:~|s_1|\leqslant |s_2|\}}\left( |s_1+s_2|^\alpha +|s_1-s_2|^{\alpha }\right) \varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}) \end{aligned}$$

and

$$\begin{aligned} {\widetilde{T}}_2=\frac{1}{2}\int _{\{(s_1,s_2)\in S_2:~|s_1|>|s_2|\}}\left( |s_1+s_2|^\alpha +|s_1-s_2|^{\alpha }\right) \varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}). \end{aligned}$$

(A.6) then becomes

$$\begin{aligned} \int _{ S_2}|s_1+s_2|^\alpha \varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})=\frac{1}{2}\int _{ S_2}\left( |s_1+s_2|^\alpha +|s_1-s_2|^{\alpha }\right) \varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}). \end{aligned}$$
(A.10)

Now recall the following inequality (see, e.g., Lemma 2.7.13 in [37]): for \(x,y\in {\mathbb {R}}\) and \(p\geqslant 0\),

$$\begin{aligned} |x+y|^p+|x-y|^p\geqslant \min \{2^{p},2\}\max \{|x|^p,|y|^p\}. \end{aligned}$$
(A.11)

It then results from (A.10) and (A.11) that

$$\begin{aligned} \int _{ S_2}|s_1+s_2|^\alpha \varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\geqslant \min \{2^{\alpha -1},1\}\max \left\{ \int _{ S_2}|s_1|^{\alpha }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s}), \int _{ S_2}|s_2|^{\alpha }\varvec{\varGamma _X}(\, \mathrm {d}\varvec{s})\right\} , \end{aligned}$$

i.e.,

$$\begin{aligned} \Vert X_1+X_2\Vert _\alpha ^\alpha \geqslant \min \left\{ 2^{\alpha -1},1\right\} \max \left\{ \Vert X_1\Vert _\alpha ^\alpha ,\Vert X_2\Vert _\alpha ^\alpha \right\} . \end{aligned}$$

This proves Lemma 5.6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Peng, Q. Series Representation of Jointly S\(\alpha \)S Distribution via Symmetric Covariations. Commun. Math. Stat. 9, 203–238 (2021). https://doi.org/10.1007/s40304-020-00216-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00216-5

Keywords

Mathematics Subject Classification

Navigation