Skip to main content
Log in

Tail Distortion Risk Measure for Portfolio with Multivariate Regularly Variation

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

For the multiplicative background risk model, a distortion-type risk measure is used to measure the tail risk of the portfolio under a scenario probability measure with multivariate regular variation. In this paper, we investigate the tail asymptotics of the portfolio loss \(\sum _{i=1}^{d}R_iS\), where the stand-alone risk vector \({\mathbf {R}}=(R_1,\ldots ,R_d)\) follows a multivariate regular variation and is independent of the background risk factor S. An explicit asymptotic formula is established for the tail distortion risk measure, and an example is given to illustrate our obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z., Hui, Y., Wong, W.K., Zitikis, R.: Prospect performance evaluation: making a case for a nonasymptotic UMPU test. J. Finance Econom. 10, 703–732 (2012)

    Google Scholar 

  3. Chan-Lau, J.A.: Systemic Risk Assessment and Oversight. Risk Books, London (2013)

    Google Scholar 

  4. Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodol. Comput. Appl. Probab. 11(3), 385–399 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chen Y., Gao Y., Gao W.X., Zhang W.P.: Second-order asymptotics of the risk concentration of a portfolio with deflated risks. Math. Prob. Eng., 4689479, 1–12 (2018)

  6. Das, B., Kratz, M.: Diversification benefits under multivariate second order regular variation. (2017) arXiv preprint arXiv:1704.02609

  7. Degen, M., Lambrigger, D.D., Segers, J.: Risk concerntration and diversification: second-order properties. Insur. Math. Econ. 46, 541–546 (2010)

    Article  Google Scholar 

  8. Dhaene, J., Vanduffel, S., Goovaerts, M.J., Kaas, R., Tang, Q., Vyncke, D.: Risk measures and comonotonicity: a review. Stoch. Models 22(4), 573–606 (2006)

    Article  MathSciNet  Google Scholar 

  9. De Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)

    Book  Google Scholar 

  10. Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R.: Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, Chichester (2005)

    Book  Google Scholar 

  11. Hardy, M., Wirch, J.: Ordering of risk measures for capital adequacy. Institute of Insurance and Pension Research, University of Waterloo, Research Report 00–03 (2003)

  12. Hua, L., Joe, H.: Second order regular variation and conditional tail expectation of multiple risks. Insur. Math. Econ. 49, 537–546 (2011)

    Article  MathSciNet  Google Scholar 

  13. Mainik, G., Ruschendorf, L.: Ordering of multivariate risk models with respect to extreme portfolio losses. Stat. Risk Modell. 29, 73–105 (2012)

    Article  MathSciNet  Google Scholar 

  14. Resnick, S.I.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303–336 (2002)

    Article  MathSciNet  Google Scholar 

  15. Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering. Springer, New York. Reprint of the 1987 original (2008)

  16. Tsanakas, A.: Dynamic capital allocation with distortion risk measures. Insur. Math. Econ. 35(2), 223–43 (2004)

    Article  MathSciNet  Google Scholar 

  17. Valdez, E., Chernih, A.: Wang’s Capital allocation formula for elliptically contoured distributions. Insur. Math. Econ. 33(3), 517–32 (2003)

    Article  MathSciNet  Google Scholar 

  18. Wang, S.S.: Premium calculation by transforming the layer premium density. ASTIN Bull. J. IAA 26(1), 71–92 (1996)

    Article  Google Scholar 

  19. Wang, S.: A universal framework for pricing financial and insurance risks. ASTIN Bull. J. IAA 32(2), 213–34 (2002)

    Article  MathSciNet  Google Scholar 

  20. Xing, G.D., Li, Y., Yang, S.: On the second-order asymptotics of tail distortion risk measure for portfolio loss under the framework of multivariate regularly variation. Commun. Stat. Simul. Comput. 49(2), 491–503 (2020)

    Article  Google Scholar 

  21. Zhu, L., Li, H.: Tail distortion risk and its asymptotic analysis. Insur. Math. Econ. 51(1), 115–21 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Key Research and Development Plan (No. 2016YFC0800104) and the National Science Foundation of China (No. 71771203, No. 11671374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zhang.

Additional information

This work is supported by the National Key Research and Development Plan (No. 2016YFC0800100) and the NSFC of China (Nos. 11671374, 71771203, 71631006).

Appendix

Appendix

We discuss results and assumptions from Section 4.2 in Resnick (2002) that are used in this paper for the sake of completeness. The following results provide conditions under which the second-order regular variation of Definition 2.4 can be represented as vague convergences of measures. Assumption 6.1 gives the appropriate conditions when the limit measure \(\nu (\cdot )\) as obtained in Definition2.3 has a density with respect to the Lebesgue measure; hence \({\mathbf {X}}\) is not asymptotically independent. On the other hand, Assumption 6.3 gives appropriate conditions when \(\nu (\cdot )\) does not has a density, it means that asymptotic independence holds for the tail distribution of \({\mathbf {X}}\). Suppose \({\mathbf {X}}\) is a d-dimensional non-negative random vector with distribution function F and identical one-dimensional marginals \(F_1\).

Assumption 6.1

We assume the following on F.

  1. 1.

    Let F have a density \(F'\) such that for \(b(t)\rightarrow \infty \),

    $$\begin{aligned} \lim _{t\rightarrow \infty } |b(t)^dtF'(b(t){\mathbf {x}})-p({\mathbf {x}})|=0, {\mathbf {x}}\in {\mathbb {E}}, \end{aligned}$$
    (6.1)

    where \(p(\cdot )\ne 0\) is bounded on \({\mathcal {N}}\) and moreover

    $$\begin{aligned} \lim _{t\rightarrow \infty } \sup \limits _{{\mathbf {a}}\in {\mathcal {N}}}|b(t)^dtF'(b(t){\mathbf {a}})-p({\mathbf {a}})|=0,{\mathbf {x}}\in {\mathbb {E}}, \end{aligned}$$
    (6.2)

    The limit function \(p({\mathbf {x}})\) necessarily satisfies \(p(t{\mathbf {x}})=t^{-\alpha -d}p({\mathbf {x}})\). This implies from Resnick (2008) that there exists \(V \in {RV}_{-\alpha }\) such that

    $$\begin{aligned} \lim _{t\rightarrow \infty } \frac{1-F(b(t){\mathbf {x}})}{V(b(t))}= \int \limits _{[{\mathbf {0}},{\mathbf {x}}]^c} p({\mathbf {u}})d{\mathbf {u}} = \nu ([{\mathbf {0}},{\mathbf {x}}]^c) , {\mathbf {x}}>{\mathbf {0}}. \end{aligned}$$
    (6.3)

    Thus, conditions (6.1) and (6.2) imply the multivariate regular variation. Instead of conditions (6.1) and (6.2), it is sufficient to assume \({\overline{F}}_1\in {RV}_{-\alpha }\) and

    $$\begin{aligned} \lim \limits _{t\rightarrow \infty }\Big |\frac{F^{'}(t{\mathbf {x}})}{t^{-d}{\overline{F}}_1(t)}-p({\mathbf {x}})\Big |=0,{\mathbf {x}}\in {\mathbb {E}}, \quad and\quad \lim \limits _{t\rightarrow \infty } \sup \limits _{{\mathbf {a}}\in {\mathcal {N}}}\Bigg |\frac{F^{'}(t{\mathbf {a}})}{t^{-d}{\overline{F}}_1(t)} -p({\mathbf {a}})\Bigg |=0\nonumber \\ \end{aligned}$$
    (6.4)

    and we can take \(V={\overline{F}}_1\).

  2. 2.

    Assume that the second-order condition given in (2.2) holds for \({\overline{F}}_1\) so that \({\overline{F}}_1\in {RV}_{-\alpha }\) and \(A \in {RV}_\rho \), \(\rho \le 0\), \(A\rightarrow 0\) and for \({\mathbf {x}}\in {\mathbb {E}}\),

    $$\begin{aligned} \lim \limits _{t\rightarrow \infty }\Bigg |\frac{\frac{F^{'}(t{\mathbf {x}})}{t^{-d}{\overline{F}}_1(t)}-p({\mathbf {x}})}{A(t)}-\chi ^{'}({\mathbf {x}})\Bigg |=0, \end{aligned}$$
    (6.5)

    where \(\chi ^{'}\ne 0\) is integrable on sets bounded away from \({\mathbf {0}}\). We also assume uniform convergence on \({\mathcal {N}}\):

    $$\begin{aligned} \lim _{t\rightarrow \infty } \sup \limits _{{\mathbf {a}}\in {\mathcal {N}}}\Bigg |\frac{\frac{F^{'}(t{\mathbf {a}})}{t^{-d}{\overline{F}}_1(t)}-p({\mathbf {a}})}{A(t)}-\chi ^{'}({\mathbf {a}})\Bigg |=0, \end{aligned}$$
    (6.6)

Also assume that \(\chi ^{'}\) is finite and bounded on \({\mathcal {N}}\).

Remark 6.2

For \({\mathbf {X}}\sim F\) with identical marginals \(F_1\), assuming conditions (6.4) – (6.6) is sufficient for (6.1) – (6.3) to hold with \(V={\overline{F}}_1\).

Using \(\nu \) as defined in (6.3), we define the signed measure

$$\begin{aligned} \mu _t([{\mathbf {0}},{\mathbf {x}}]^c):=\frac{t{\mathbb {P}}\Big [\frac{{\mathbf {X}}}{b(t)\in [{\mathbf {0}},{\mathbf {x}}]^c}\Big ]-\nu ([{\mathbf {0}},{\mathbf {x}}]^c)}{A(b(t))}, \end{aligned}$$
(6.7)

which has a density given by

$$\begin{aligned} \mu _t^{'}([{\mathbf {0}},{\mathbf {x}}]^c):=\frac{tb(t)^dF^{'}\big (b(t){\mathbf {x}}\big )-p({\mathbf {x}})}{A(b(t))}, \quad x\in [0,\infty )^d. \end{aligned}$$
(6.8)

Assumption 6.3

We assume the following on F.

  1. 1.

    Suppose (2.4) holds with \(\nu ([{\mathbf {0}},{\mathbf {x}}]^c)=k \sum _{i=1}^d x_i^{-\alpha }\), where k is some constant.

  2. 2.

    Moreover, the one-dimensional marginals are identical and satisfy the second-order condition as in Definition 2.2 such that we also have

    $$\begin{aligned} \mu _{t1}^\pm :=\Bigg ( \frac{t{\mathbb {P}}[\frac{X_1}{b(t)}\in \cdot ]-\nu _\alpha (\cdot )}{A(b(t))} \Bigg )^\pm {\mathop {\rightarrow }\limits ^{v}}\chi _1^\pm \end{aligned}$$
    (6.9)

on \((0,\infty ]\) where \(\chi _1(x,\infty ]=cx^{-\alpha }\frac{x^\rho -1}{\rho }.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, J. & Zhang, W. Tail Distortion Risk Measure for Portfolio with Multivariate Regularly Variation. Commun. Math. Stat. 10, 263–285 (2022). https://doi.org/10.1007/s40304-020-00223-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00223-6

Keywords

Mathematics Subject Classification

Navigation