Skip to main content
Log in

Entropy generation of three-dimensional Bödewadt flow of water and hexanol base fluid suspended by \(\hbox {Fe}_{{{3}}}\hbox {O}_{{{4}}}\) and \(\hbox {MoS}_{{{2}}}\) hybrid nanoparticles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, three-dimensional Bödewadt hybrid nanofluid flow has been investigated. Base fluids are water and hexanol which contain \(\hbox {Fe}_{3}\hbox {O}_{4}\) and \(\hbox {MoS}_{2}\). The governing nonlinear PDEs are converted into nonlinear ODEs and the nonlinear equations are solved by the homotopy perturbation method (HPM). The effects of nanoparticle volume fraction, Eckert number, base fluid and shape factor on entropy generation, Nusselt number, skin friction coefficient and Bejan number have been studied. Entropy generation is increased with an increment in Eckert number; while, it is decreased by growth in nanoparticle volume fraction and shape factor. In a similar situation, hexanol has higher rate of irreversibility, higher Bejan number and higher Nusselt number than water. The skin friction coefficient is not a function of the Eckert number and shape factor, but it is an increasing function of nanoparticle volume fraction. In this paper, by averaging the differences of Nusselt number and skin friction coefficient between water and hexanol, it can be observed that the Nusselt number and skin friction coefficient for hexanol are 11% and 5% more than water, respectively. Indeed, in a fixed situation, hexanol-based fluid flows have higher heat transfer and drag than water-based fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M Gholinia, S Gholinia, Kh Hosseinzadeh and D D Ganji, Results Phys9, 1525 (2018)

    Article  ADS  Google Scholar 

  2. S S Ghadikolaei, Kh Hosseinzadeh and D D Ganji, J. Mol. Liquids 272, 226 (2018)

    Article  Google Scholar 

  3. S U S Choi and J A Eastman, Enhancing thermal conductivity of fluids with nanoparticles, No. ANL/MSD/CP-84938; CONF-951135-29 (Argonne National Lab., IL, United States, 1995)

  4. A Malvandi and D D Ganji, Powder Technol263, 37 (2014)

    Article  Google Scholar 

  5. S Lee, S U S Choi and S Li and J A Eastman, J. Heat Transfer 121(2), 280 (1999)

    Article  Google Scholar 

  6. M Gholinia, S A H Kiaeian Moosavi, M Pourfallah, S Gholinia and D D Ganji, Int. J. Ambient Energy 1 (2019)

  7. D-H Doh, M Muthtamilselvan, B Swathene and E Ramya, Math. Comput. Simul. 168, 90 (2020)

    Article  Google Scholar 

  8. K Muhammad, T Hayat, A Alsaedi and B Ahmad, Physica A 550, 123966 (2020)

    Article  Google Scholar 

  9. M F L De Volder, S H Tawfick, R H Baughman and A J Hart, Science 339(6119), 535 (2013)

    Article  ADS  Google Scholar 

  10. B Mahanthesh and B J Gireesha, Defect Diffusion Forum 388, 124 (2018)

    Article  Google Scholar 

  11. B Mahanthesh, N S Shashikumar and G Lorenzini, J. Therm. Anal. Calor. (2020): 1-9

  12. F Mebarek-Oudina, A Aissa, B Mahanthesh and H F öztop, Int. Commun. Heat Mass Transf. 117, 104737 (2020)

    Article  Google Scholar 

  13. B Mahanthesh, F Mabood, B J Gireesha and R S R Gorla, Eur. Phys. J. Plus 132(3), 1 (2017)

    Article  Google Scholar 

  14. B Mahanthesh, B J Gireesha and C S K Raju. Inf. Med. Unlocked 9, 26 (2017)

    Article  Google Scholar 

  15. B Mahanthesh and T V Joseph, J. Nanofluids 8(4), 870 (2019)

    Article  Google Scholar 

  16. B Mahanthesh, B J Gireesha, M Archana, T Hayat and A Alsaedi, Int. J. Numer. Meth. Heat Fluid Flow  28, 2423 (2018)

  17. B Mahanthesh, B J Gireesha, G T Thammanna, T Hayat and A Alsaedi, J. Mech. Eng. Sci. 233, 1224 (2019)

  18. Th V Karman, ZAMM 1(4), 233 (1921)

    Article  ADS  Google Scholar 

  19. N Bachok, A Ishak and P Ioan, Physica B 406 (9), 1767 (2011)

    Article  ADS  Google Scholar 

  20. S M R S Naqvi, T Muhammad, S Saleem and H M Kim, Physica A 553, 123970 (2019)

  21. M R Zangooee, Kh Hosseinzadeh and D D Ganji, Case Stud. Therm. Eng. 14, 100460 (2019)

    Article  Google Scholar 

  22. M Turkyilmazoglu, Comput. Fluids 94, 139 (2014)

    Article  MathSciNet  Google Scholar 

  23. M Turkyilmazoglu, Comput. Fluids 90, 51 (2014)

    Article  MathSciNet  Google Scholar 

  24. R Ellahi, M H Tariq, M Hassan and K Vafai, J. Mol. Liquids 229, 339 (2017)

    Article  Google Scholar 

  25. M Khan, J Ahmed and L Ahmad, Appl. Math. Mech39(9), 1295 (2018)

    Article  MathSciNet  Google Scholar 

  26. M Khan, J Ahmed and L Ahmad, J. Braz. Soc. Mech. Sci. Eng. 40(12), 573 (2018)

    Article  Google Scholar 

  27. A Bejan, The method of entropy generation minimization. Energy and the environment (Springer, Berlin, Germany, 1999) pp. 11–22

  28. A Renuka, M Muthtamilselvan, D-H Doh and G-R Cho, Math. Comput. Simul. 171, 152 (2020)

    Article  Google Scholar 

  29. M I Khan, S Qayyum, T Hayat, M Imran Khan and A Alsaedi, Int. J. Heat Mass Transf. 133, 959 (2019)

    Article  Google Scholar 

  30. Kh Hosseinzadeh, A Asadi, A R Mogharrebi, J Khalesi, S Mousavisani and D D Ganji, Case Stud. Therm. Eng14, 100482 (2019)

    Article  Google Scholar 

  31. Y-T Yang, Y-H Wang and B-Y Huang, Numer. Heat Trans. A Appl. 67(5), 571 (2015)

    Article  ADS  Google Scholar 

  32. E Manay, E F Akyürek and B Sahin, Results Phys9, 615 (2018)

    Article  ADS  Google Scholar 

  33. S A Khan, M Ijaz Khan, T Hayat and A Alsaedi, Comput. Meth. Programs Biomed. 185, 105152 (2020)

    Article  Google Scholar 

  34. M I Khan, A Alsaedi, S Qayyum, T Hayat and M Imran Khan, Colloids Surf. A Physicochem. Eng. Asp. 570, 117 (2019)

    Article  Google Scholar 

  35. T Hayat, S A Khan, M Ijaz Khan and A Alsaedi, Comput. Meth. Programs Biomed177, 57 (2019)

    Article  Google Scholar 

  36. T Hayat, M Kanwal, S Qayyum and A Alsaedi, Physica A 544, 123437 (2020)

  37. M Turkyilmazoglu, Int. J. Mech. Sci. 90, 246 (2015)

    Article  Google Scholar 

  38. Q Xue, Phys. B Condens. Matter 368, 302 (2005)

    Article  ADS  Google Scholar 

  39. M Mustafa, J A Khan, T Hayat and A Alsaedi, J. Mol. Liquids 211, 119 (2015)

    Article  Google Scholar 

  40. S O Ajadi and M Zuilino, Appl. Math. Lett. 24(10), 1634 (2011)

    Article  MathSciNet  Google Scholar 

  41. D Slota, Int. Commun. Heat Mass Transf. 37(6), 587 (2010)

    Article  Google Scholar 

  42. A Bejan, Int. J. Energy Res26, 7 (2002)

    Google Scholar 

  43. B E Rapp, Modelling, Microflidics: Mechanics and mathematics, in: Micro and nanotechnologies (Elsevier, 2017) Chap. 9, pp. 243–263

  44. H Masuda, A Ebata and K Teramae, Netsu Bussei 7(4), 227 (1993)

    Article  Google Scholar 

  45. M Fakour, A Vahabzadeh and D D Ganji, Case Stud. Therm. Eng. 4, 15 (2014)

    Article  Google Scholar 

  46. M Sheikholeslami, D D Ganji and H R Ashorynejad, Powder Technol. 239, 259 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, K., Mardani, M.R., Salehi, S. et al. Entropy generation of three-dimensional Bödewadt flow of water and hexanol base fluid suspended by \(\hbox {Fe}_{{{3}}}\hbox {O}_{{{4}}}\) and \(\hbox {MoS}_{{{2}}}\) hybrid nanoparticles. Pramana - J Phys 95, 57 (2021). https://doi.org/10.1007/s12043-020-02075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02075-9

Keywords

PACS Nos

Navigation