Skip to main content
Log in

Formation of the Neoproterozoic Continental Crust in the Structures of the Central Segment of the Central Asian Fold Belt

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper considers the results of geochronological (U-Pb method, ID-TIMS), geochemical, and Sm-Nd isotopic studies of granitoids, volcanics, and terrigenous rocks of the eastern Dzabkhan terrane, as well as felsic volcanics of the Dzabkhan Formation in its southern part. It is established that the post-kinematic granitoids of the Dzabhan–Mandal Zone, Erdenekhairkhan, and Bogdoingol blocks were formed in the range of 813 ± 9–772 ± 3 and ca. 720 Ma, and the rhyolites of the Dzabkhan Formation were formed at 790 ± 3 Ma. The rock sources in the southern part of the terrane and in the Bogdoingol Block were mainly ancient crustal complexes. Nd isotopic data on the rocks of the Dzabkhan–Mandal Zone and the Erdenekhairkhan Block demonstrate the mixed nature of their sources and suggest a significant contribution of Early Neoproterozoic juvenile material. Based on obtained and previous data, it is shown that the Dzabkhan terrane is not a homogeneous block of the Early Precambrian continental crust, but represents a Neoproterozoic composite terrane consisting of rocks of island arc and continental margin complexes, and reworked Early Precambrian continental crust. The correlation of the Precambrian complexes of the Dzabkhan terrane with those of the Songino, Baidarik, and Tarbagatai terranes is discussed, and features of the formation of the Neoproterozoic continental crust in the central segment of the Central Asian fold belt are considered. It is established that the Khangay group terranes comprise widespread oceanic, island arc, continental margin, and riftogenic complexes formed at ca. 960–930, 880–850, and 810–790 Ma. Based on the data obtained, a model of the formation and evolution of the Neoproterozoic crust of the Central Asian fold belt is proposed by the example of paleoreconstructions for 925 and 825 Ma. It is assumed that the extensive growth of the Neoproterozoic continental crust of the region was related to the subduction processes in the framing of the Rodinia supercontinent at about 960–860 Ma ago and continental rifting that initiated the breakup of the supercontinent in the middle Tonian at about 860 and 800 Ma ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Azimov, P.Ya. and Kozakov, I.K., First find of high-pressure rocks in a composite Dzabkhan terrane (Western Mongolia): evidence for convergent setting, Problemy tektoniki kontinentov i okeanov. Materialy LI Tektonicheskogo soveshchaniya (Tectonic Problems of Continents and Oceans. Proc. 51st Tectonic Conference), Moscow: GEOS, 2019, pp. 20–22.

  2. Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for Phanerozoic crustal growth of Central Asia, J. Asian Earth Sci., 2002, vol. 21, pp. 87–110.

    Article  Google Scholar 

  3. Belichenko, V.G. and Boos, R.G., Bokson–Khubsugul–Dzabkhan paleomicrocontinent in structure of the Central Asian Paleozoids, Geol. Geofiz., 1988, no. 12. C. 20–28.

    Google Scholar 

  4. Belichenko, V.G., Sklyarov, E.V., Dobretsov, N.L., and Tomurtogoo, O., Geodynamic map of the Paleoasian Ocean. Eastern segment, Geol. Geofiz., 1994, vol. 35, no. 7–8, pp. 29–40.

    Google Scholar 

  5. Bogdanova S.V., Pisarevsky, S.A., and Li, Z.X., Assembly and breakup of Rodinia (some results of IGCP Project 440), Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 3, pp. 259–274.

    Article  Google Scholar 

  6. Bold, U., Crowley, J.L., Smith, E.F., et al., Neoproterozoic to Early Paleozoic tectonic evolution of the Zavkhan terrane of Mongolia: implications for continental growth in the Central Asian Orogenic Belt, Lithosphere, 2016a, vol. 8, no. 6, pp. 729–750.

    Article  Google Scholar 

  7. Bold, U., Smith, E.F., Rooney, A.D., et al., Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: the backbone for Cryogenian and Early Ediacaran chemostratigraphic records, Am. J. Sci., 2016b, vol. 316, pp. 1–63.

    Article  Google Scholar 

  8. Buriánek, D., Schulmann, K., Hrdlickova, K., et al., Geochemical and geochronological constraints on distinct Early–Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag continent in western Mongolia, Gondwana Res, 2017, vol. 47, pp. 200–227.

    Article  Google Scholar 

  9. Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., et al., Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles, Earth Planet. Sci. Lett., 2016, vol. 449, pp. 118–126.

    Article  Google Scholar 

  10. Demoux, A., Kröner, A., Liu, D., and Badarch, G., Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating, Int. J. Earth Sci., 2009, vol. 98, pp. 1365–1380.

    Article  Google Scholar 

  11. Didenko, A.N., Mossakovsky, A.A., Pecherskii, D.M., et al., Geodynamics of Paleozoic oceans of Central Asia, Geol. Geofiz., 1994, vol. 35, no. 7–r8, pp. 59–75.

  12. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. M–b 1 : 200000, L-47-I (Geological map of the Mongolian People Republic on a Scale 1 : 200000, L-47-I), Moscow: Ministerstvo geologii SSSR, Zarubezhgeologiya, 1982c.

  13. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. M–b 1 : 200000, M-46-XXXV (Geological Map of the Mongolian People Republic on a Scale 1 : 200000, M-46-XXXV), Moscow: Vsesoyuznoe eksportno–importnoe ob”edinenie “Tekhnoeksport”, 1982a.

  14. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. M–b 1 : 200000, M–46–XXXVI (Geological Map of the Mongolian People Republic on a Scale 1 : 200000, M-46-XXXVI), Moscow: Vsesoyuznoe eksportno–importnoe ob”edinenie “Tekhnoeksport”, 1982b.

  15. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  16. Gordienko, I.V. and Metelkin, D.V., The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian ocean, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 69–81.

    Article  Google Scholar 

  17. Hall, R.M., Australia–SE Asia collision: plate tectonics and crustal flow, The SE Asian Gateway: History and Tectonics of Australia–Asia Collision, Hall, R, Cottam, M.A., and Wilson, M.E.J., Eds., Geol. Soc. London: Spec. Publ., 2010, vol. 355, pp. 75–109.

  18. Il’in, A.V., Geologicheskoe razvitie Yuzhnoi Sibiri i Mongolii v pozdnem dokembrii–kembrii (Geological Evolution of South Siberia and Mongolia in the Late Precambrian–Cambrian), Moscow: Nauka, 1982.

  19. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  20. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. M-b 1 : 1500000 (Map of the Geological Formation of the Mongolian People’s Republic on a Scale 1 : 1500000) Yanshin, A.L, Eds., Moscow: GUGiK USSR, 1989.

  21. Khain, E.V., Bibikova, E.V., Kröner, A., et al., The most ancient ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, nos 3–4, pp. 311–325.

    Article  Google Scholar 

  22. Kheraskova, T.N., Bush, V.A., Didenko, A.N., and Samygin, S.G., Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean, Geotectonics, 2010, vol. 44, no. 1, pp. 1–24.

    Article  Google Scholar 

  23. Kovach, V.P., Kozakov, I.K., Yarmolyuk, V.V., et al., Crustal growth stages in the Songino Block of the Early Caledonian superterrane in Central Asia: II. Geochemical and Nd-isotope data, Petrology, 2013, vol. 21, no. 5, pp. 409–426.

    Article  Google Scholar 

  24. Kovach, V.P., Rytsk, E.Yu., Salnikova, E.B., et al., New U-Pb (TIMS) geochronological data on age of tonalites of the Sumsunur complex of the Gargan block: discussion on Paleozoic organics in ancient sequences of Eastern Sayan, V Rossiiskaya konferentsiya po izotopnoi geokhronologii “Geokhronometricheskie izotopnye sistemy, metody ikh izucheniya, khronologiya geologicheskikh protsessov” (5th Russian Conference on Isotope Geochronology: “Geochronometric Isotope Systems, Methods of their Study, and Chronology of Geological Processes), Moscow: IGEM RAN, 2012, pp. 158–160.

  25. Kovach, V.P., Kozakov, I.K., Kroner, A., et al., Early Neoproterozoic crust formation in the Dzabkhan microcontinent, Central Asian Orogenic Belt, Geodynam. Tectonophys., 2017, vol. 8, pp. 499–501.

    Article  Google Scholar 

  26. Kovach, V.P., Kozakov, I.K., Wang, K.-L., et al., Age and sources of terrigenous rocks of basal formation of the Tsagaan-Olom Group of the Dzabkhan Terrane: results of U-Th-Pb geochronological, Lu-Hf, and Sm-Nd isotopic studies, Stratigraphy. Geol. Correlation, 2019a, vol. 27, no. 5, pp. 555–572.

    Article  Google Scholar 

  27. Kovach, V.P., Kozakov, I.K., Sal’nikova, E.B., et al., Age and source areas of metaterrigenous rocks of the Dzabkhan and Songino terranes of the Central Asian Orogenic Belt, Materialy VI Rossiiskoi konferentsii po problemam geologii i geodinamiki dokembriya. “Etapy formirovaniya i razvitiya proterozoiskoi zemnoi kory: stratigrafiya, metamorfizm, magmatizm, geodinamika” (Proc. 6th Russian Conference on Problems of Precambrian Geology and Geodynamics “Stages of Formation and Evolution of Proterozoic Crust: Stratigraphy, Metamorphism, and Magmatism”), St. Petersburg: IGGD RAN, “Svoe izdatel’stvo”, 2019b, pp. 96–97.

  28. Kozakov, I.K., Dokembriiskie infrastrukturnye kompleksy Mongolii (Precambrian Infrastructural Complexes of Mongolia), Leningrad: Nauka, 1986.

  29. Kozakov, I.K., Kotov, A.B., Kovach, V.P., and Sal’nikova, E.B., Crustal growth in the geologic evolution of the Baidarik Block, Central Mongolia: evidence from Sm-Nd isotopic systematics, Petrology, 1997, vol. 5, no. 3, pp. 201–207.

    Google Scholar 

  30. Kozakov, I.K., Sal’nikova, E.B., Khain, E.V., et al., Early Caledonian crystalline rocks of the Lake Zone in Mongolia: formation history and tectonic settings as deduced from U-Pb and Sm-Nd datings, Geotectonics, 2002, vol. 36, no. 2, pp. 156–166.

    Google Scholar 

  31. Kozakov, I.K., Sal’nikova, E.B., Wang, T., et al., Early Precambrian crystalline complexes of the Central Asian microcontinent: age, sources, tectonic position, Stratigraphy. Geol. Correlation, 2007, vol. 15, no. 2, pp. 121–140.

    Article  Google Scholar 

  32. Kozakov, I.K., Kozlovsky, A.M., Yarmolyuk, V.V., et al., Crystalline complexes of the Tarbagatai Block of the Early Caledonian auperterrane of Central Asia, Petrology, 2011, vol. 19, no. 4, pp. 426–444.

    Article  Google Scholar 

  33. Kozakov, I.K., Sal’nikova, E.B., Yarmolyuk, V.V., et al., Crustal growth stages in the Songino Block of the Early Caledonian superterrane in Central Asia: I. Geological and geochronological data, Petrology, 2013a, vol. 21, no. 3, pp. 203–220.

    Article  Google Scholar 

  34. Kozakov, I.K., Sal’nikova, E.B., Anisimova, I.V., et al., Late Riphean age of conglomerates from the Kholbonur Complex of Songino Block, Central Asian Caledonides, Stratigraphy. Geol. Correlation, 2013b, vol. 21, no. 5, pp. 482–495.

    Article  Google Scholar 

  35. Kozakov, I.K., Kovach, V.P., Bibikova, E.V., et al., Late Riphean episode in the formation of crystalline rock complexes in the Dzabkhan microcontinent: geological, geochronologic, and Nd isotopic-geochemical data, Petrology, 2014, vol. 22, no. 5, pp. 480–506.

    Article  Google Scholar 

  36. Kozakov, I.K., Kirnozova, T.I., Kovach V.P., et al., Late Riphean age of the crystalline basement of the carbonate cover of the Dzabkhan Microcontinent, Stratigraphy. Geol. Correlation, 2015, vol. 23, no. 3, pp. 3–12.

    Google Scholar 

  37. Kozakov, I.K., Kröner, A., and Kovach, V.P., Early Proterozoic stage in the formation of the basement of the Dzabkhan terrane of the eastern segment of the Central Asian Foldbelt, Tektonika, glubinnoe stroenie i minerageniya Vostoka Azii: IX Kosyginskie chteniya. Materialy Vserossiiskoi konferentsii (Tectonics, Deep Structure, and Metallogeny of East Russia. 9th Kosygin’s Reading), Khabarovsk: ITiG DVO RAN, 2016, pp. 35–38.

  38. Kozakov, I.K., Kuznetsov, A.B., Erdenegargal, Ch., et al., Neoproterozoic complexes of the shelf cover of the Dzabkhan Terrane basement in the Central Asian Orogenic Belt, Stratigraphy. Geol. Correlation, 2017a, vol. 25, no. 5, pp. 479–471.

    Article  Google Scholar 

  39. Kozakov, I.K., Kröner, A., Kovach, V.P., et al., Neoproterozoic stage (~960–930 Ma) in the formation of island-arc complex of the Basement of the Dzabkhan terrane of the eastern segment of the Central Asian Foldbelt, Tektonika sovremennykh i drevnikh okeanov i ikh okrain. Materialy XLIX Tektonicheskogo soveshchaniya, posvyashchennogo 100–letiyu akademika Yu.M. Pushcharovskogo (Tectonics of Modern and Ancient Oceans and their Margins. Proc 49th Tectonic Conference Dedicated to the 100th Anniversary of the Academician Yu.M. Pushcharovsky), Moscow: GEOS, 2017b, pp. 181–184.

  40. Kozakov, I.K., Lykhin, D.A., Erdenegargal, Ch., et al., Tectonic position of the Neoproterozoic gabbro-ultrabasite and gabbroid complexes of the Bayan Nuur Block of the Songino Ledge, Central Asian Orogenic Belt, Stratigraphy. Geol. Correlation, 2019a, vol. 27, no. 2, pp. 159–180.

    Article  Google Scholar 

  41. Kozakov, I. K., Kovach, V.P., Sal’nikova, E.B., and Didenko, A.N., Neoproterozoic stage in the formation of Neoproterozoic superterrane of Central Asia, Materialy VI Rossiiskoi konferentsii po problemam geologii i geodinamiki dokembriya. “Etapy formirovaniya i razvitiya proterozoiskoi zemnoi kory: stratigrafiya, metamorfizm, magmatizm, geodinamika” (Proc. 6th Russian Conference on Problems of Precambrian Geology and Geodynamics “Stages of the Formation and Evolution of the Proterozoic Crust: Stratigraphy, Metamorphism, Magmatism, and Geodynamics”), St. Petersburg: IGGD RAN, “Svoe izdatel’stvo”, 2019b, pp. 99–100.

  42. Kozakov, I.K., Anisimova, I.V., Sal’nikova, E.B., et al., Olonkhuduk anorthosite pluton of the Baidaric Terrane of the Central Asian Orogenic Belt: geological position and age, Petrology, 2020a, vol. 28, no. 2, pp. 141–150.

    Article  Google Scholar 

  43. Kozakov I.K., Kirnozova T.I., Fugzan M.M., et al. Neoproterozoic age of the crystalline basement of the Bogdoingol Block, Dzabkhan Terrane (Central Asian Fod Belt), Stratigraphy. Geol. Correlation, 2020b, vol. 28, pp. 630–537.

    Article  Google Scholar 

  44. Kozlovsky, A.M., Yarmolyuk, V.V., Savatenkov, V.M., and Kovach, V.P., Sources of basaltoid magmas in rift settings of an active continental margin: example from the bimodal association of the Noen and Tost Ranges of the Late Paleozoic Gobi-Tien Shan rift zone, southern Mongolia, Petrology, 2006, vol. 14, no. 4, pp. 337–360.

    Article  Google Scholar 

  45. Kramchaninov, A.Yu. and Kuznetsov, A.B., Variations of δ88Sr and 87Sr/86Sr in Neoproterozoic sedimentary carbonates (the Tsagaan Oloom Formation, West Mongolia), Dokl. Earth Sci., 2014, vol. 455, no. 4, pp. 414–418.

    Article  Google Scholar 

  46. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  47. Krogh, T.E., Improved accuracy of U-Pb zircon by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 637–649.

    Article  Google Scholar 

  48. Kröner, A., Lehmann, J., Schulmann, K., et al., Lithostratigraphic and geochronological constraints on the evolution of the Central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion, Am. J. Sci., 2010, vol. 310, pp. 523–574.

    Article  Google Scholar 

  49. Kröner, A., Fedotova, A.A., Khain, E.V., et al., Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya Belt, Siberia: geochronology and geodynamic implications, J. Asian Earth Sci., 2015a, vol. 111, pp. 138–160.

    Article  Google Scholar 

  50. Kröner, A., Kovach, V.P., Kozakov, I.K., et al., Zircon ages and Nd-hf isotopes in UHT granulites of the Ider Complex: a cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia, Gondwana Res., 2015b, vol. 27, pp. 1392–1406.

    Article  Google Scholar 

  51. Kröner, A., Kovach, V., Alexeiev, D., et al., No excessive crustal growth in the Central Asian orogenic belt: further evidence from field relationships and isotopic data, Gondwana Res, 2017a, vol. 50, pp. 135–166.

    Article  Google Scholar 

  52. Kröner, A., Kovach, V., Kozakov, I., et al., Granulites and Palaeoproterozoic lower crust of the Baidarik block, Central Asian Orogenic Belt of NW Mongolia, J. Asian Earth Sci., 2017b, vol. 145, pp. 393–407.

    Article  Google Scholar 

  53. Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino–Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolian Massif: Early Baialian and Early Caledonian Stages), Moscow: PROBEL-2000, 2004.

  54. Kuzmichev, A.B. and Larionov, A.N., Neoproterozoic island arcs in East Sayan: duration of magmatism (from U-Pb zircpn dating of volcanic clastics), Russ. Geol. Geophys., 2013, vol. 54, no. 1, pp. 34–43.

    Article  Google Scholar 

  55. Kuznetsov, A.B., Bekker, A., Ovchinnikova, G.V., et al., Unradiogenic strontium and moderate–amplitude carbon isotope variations in early tonian seawater after the assembly of rodinia and before the bitter springs excursion, Precambrian Res., 2017, vol. 298, pp. 157–173.

    Article  Google Scholar 

  56. Kuznetsov A.B., Vasilieva I.M., Sitkina D.R., et al., Age of carbonates and phosphorites in the sedimentary cover of the Tuva–Mongolian microcontinent, Dokl. Earth Sci., 2018, vol. 479, no. 1, pp. 282–285.

    Article  Google Scholar 

  57. Levashova, N.M., Kalugin, V.M., Gibsher, A.S., et al., The origin of the baidaric microcontinent, mongolia: constraints from paleomagnetism and geochronology, Tectonophysics, 2010, vol. 485, pp. 306–320.

    Article  Google Scholar 

  58. Li, Z.X., Li, X.H., Kinny, P.D., et al., Geochronology of neoproterozoic syn–rift mag–matism in the yangtze craton south china, and correlations with other continents evidence for a mantle superplume that broke up rodinia, Precambrian Res., 2003, vol. 122, pp. 85–109.

    Article  Google Scholar 

  59. Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., Assembly, configuration, and break–up history of rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.

    Article  Google Scholar 

  60. Lu, S., Li, H., Zhang, Ch., and Niu, G., Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments, Precambrian Res., 2008, vol. 160, pp. 94–107.

    Article  Google Scholar 

  61. Lu, S., Zhao, G., Wang, Hu., and Hao, G., Precambrian metamorphic basement and sedimentary cover of the north china craton: a review, Precambrian Res., 2008, vol. 160, pp. 77–93.

    Article  Google Scholar 

  62. Ludwig, K.R., Pbdat for MS-DOS, version 1.21, U.S. Geol. Survey Open–File Rept, 1991, no. 88-542.

  63. Ludwig, K.R., Isoplot v. 4.15: a geochronological toolkit for Microsoft Excel, Berkley Geochronol. Center, Spec. Publ., 2008, no. 4.

  64. Mattinson, J.M., A study of complex discordance in zircons using step–wise dissolution techniques, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 117–129.

    Article  Google Scholar 

  65. Mattinson, J.M., Zircon U-Pb chemical abrasion “CA–TIMS” method: combined annealing and multi–step partial dissolution analysis for improved and accuracy of zircon ages, Chem. Geol., 2005, vol. 220, pp. 47–66.

    Article  Google Scholar 

  66. Merdith, A.S., Alan, S., Collins, A.S., Williams, S.E., et al., A full-plate global reconstruction of the Neoproterozoic, Gondwana Res, 2017, vol. 50, pp. 84–134.

    Article  Google Scholar 

  67. Metelkin, D.V., Evolyutsiya struktur Tsentral’noi Azii i rol' sdvigovoi tektoniki po paleomagnitnym dannym (Structural Evolution of Central Asia and Role of Strike-Slipe Tectonics: Evidence from Paleomagnetic Data), Novosibirsk: INGG SO RAN, 2012.

  68. Metelkin, D.V., Vernikovsky, V.A., and Kazansky, A.Yu., Tectonic evolution of the siberian paleocontinent from the neoproterozoic to the late mesozoic: paleomagnetic record and reconstructions, Russ. Geol. Geophys., 2012, vol. 53, pp. 675–688.

    Article  Google Scholar 

  69. Mitrofanov, F.P., Bibikova, E.V., Kozakov, I.K., et al., Archean isotope age of tonalitic “gray” gneisses in Caledonide structures of Central Mongolia, Dokl. Akad. Nauk SSSR, 1985, vol. 284, no. 2, pp. 670–674.

    Google Scholar 

  70. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Orogenic Belt: Geodynamic evolution and history of formation, Geotektonika, 1993, no. 6, pp. 3–33.

  71. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil’eva, I.M., et al., U–Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River Basin, Western Mongolia, Stratigraphy. Geol. Correlation, 2012, vol. 20, no. 6, pp. 516–527.

    Article  Google Scholar 

  72. Rooney, A.D., Strauss, J.V., Brandon, A.D., and Macdonald, F.A., A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations, Geology, 2015, vol. 43, no. 5, pp. 459–462.

    Article  Google Scholar 

  73. Ruzhentsev, S.V. and Burashnikov, V.V., Tectonics of the Western Mongolian Salairides, Geotektonika, 1995, no. 5. C. 25–40.

    Google Scholar 

  74. Rytsk, E.Yu., Amelin, Yu.V., Rizvanova, N.G., et al., Age of rocks in the Baikal–Muya Foldbelt, Stratigraphy. Geol. Correlation, 2001, vol. 9, no. 4, pp. 315–326.

    Google Scholar 

  75. Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., et al., Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt, Geotectonics, 2011, vol. 45, no. 5, pp. 349–377.

    Article  Google Scholar 

  76. Saleeby, J.B., Accretionary tectonics of the north American Cordillera, Annu. Rev. Earth Planet. Sci., 1983, vol. 15, pp. 45–73.

    Article  Google Scholar 

  77. Samygin, S.G. and Kheraskova, T.N., Geological structure and stages of tectonic evolution of Paleozoids of Kazakhstan, Litosfera, 2019, vol. 19, no. 3, pp. 347–371.

    Google Scholar 

  78. Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., et al., Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: determining factors, Stratigraphy. Geol. Correlation, 2002, vol. 10, no. 1, pp. 1–41.

    Google Scholar 

  79. Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: the evolution of opinions and the current estimate, Stratigraphy. Geol. Correlation, 2015, vol. 23, no. 6, pp. 568–579.

    Article  Google Scholar 

  80. Shields–Zhou, G., Porter, S.A., and Halverson, G.P., A new rock-based definition for the Cryogenian period (circa 720–635 Ma), Episodes, 2016, vol. 39, pp. 3–9.

    Article  Google Scholar 

  81. Shu, L.S., Faure, M., Yu, J.H., and Jahn, B.M., Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia, Precambrian Res., 2011, vol. 187, pp. 263–276.

    Article  Google Scholar 

  82. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two–stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  83. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Article  Google Scholar 

  84. Stern, R.J., Neoproterozoic crustal growth: the solid earth system during a critical episode of earth history, Gondwana Res., 2008, vol. 14, nos. 1–2, pp. 33–50.

    Article  Google Scholar 

  85. Stewart, J.H., Reconstructing Rodinia by fitting Neoproterozoic continental margins, U.S. Geol. Surv. Open–File Rept., 2009, 2009-1191.

    Book  Google Scholar 

  86. Sun, S.–S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ, 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  87. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  88. Tretyakov A.A., Degtyarev K.E., Shatagin K.N., et al., Neoproterozic anorogenic rhyolite–granite volcanoplutonic association of the Aktau–Mointy sialic massif (Central Kazakhstan): age, source, and paleotectonic position, Petrology, 2015, vol. 23, no. 1, pp. 22–44.

    Article  Google Scholar 

  89. Turkina, O.M. and Rodionov, N.V., A Late Neoproterozoic ocean island arc complex of the Arzybei terrane, Eastern Sayan, Geology and magmatism of the Altai orogeny, Special Session at the 14th International Workshop on Present Earth Surface Processes and Long-term Environmental Changes in East Eurasia, Novosibirsk: 2017, vol. 2, pp. 41–42.

  90. Vernikovsky, V.A., Vernikovskaya, A.E., Pease, V.L., and Gee, D.G., Neoproterozoic orogeny along the margins of Siberia, Geol. Soc. London: Mem., 2004, vol. 30, no. 1, 233–248.

    Google Scholar 

  91. Vernikovsky, V.A., Metelkin, D.V., Vernikovskaya, A.E., et al., The oldest island arc complex of Taimyr: concerning the issue of the Central-Taimyr accretionary belt formation and paleogeodynamic reconstructions in the Arctic, Dokl. Earth Sci., 2011, vol. 436, no. 5, pp. 186–192.

    Article  Google Scholar 

  92. Yarmolyuk, V.V. and Degtyarev, K.E., Precambrian terranes of the Central Asian Orogenic Belt: comparative characteristics, types, and peculiarities of tectonic evolution, Geotectonics, 2019, vol. 53, no. 1, pp. 1–23.

    Article  Google Scholar 

  93. Yarmolyuk, V.V., Kovalenko, V.I., Anisimova, I.V., et al., Late Riphean alkali granites of the Zabhan microcontinent: evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold Belt, Dokl. Earth Sci., 2008, vol. 420, no. 3, pp. 583–588.

    Article  Google Scholar 

  94. Yarmolyuk, V.V., Kovalenko, V.I., Kozlovsky, A.M., et al., Crust-forming processes in the Hercynides of the Central Asian Foldbelt, Petrology, 2008, vol. 16, no. 7, pp. 679–709.

    Article  Google Scholar 

  95. Yarmolyuk, V. V., Kozlovsky, A. M., Salnikova, E. B., et al., Structure, age, and geodynamic settings of Early Neoproterozoic magmatic complexes of the Central Asian Fold Belt exemplified by the Holbo Nur Zone of Songin Terrane, Dokl. Earth Sci., 2015, vol. 465, no. 1, pp. 1112–1116.

    Article  Google Scholar 

  96. Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., et al., Composition, sources, and geodynamic nature of giant batholiths in Central Asia: evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area, Petrology, 2016, vol. 24, no. 5, pp. 433–461.

    Article  Google Scholar 

  97. Yarmolyuk, V.V., Kozlovsky, A.M., and Lebedev, V.I., Neoproterozoic magmatic complexes of the Songino Block (Mongolia): a problem of formation and correlation of Precambrian terranes in the Central-Asian Orogenic Belt, Petrology, 2017, vol. 25, no. 4, pp. 365–395.

    Article  Google Scholar 

  98. Yarmolyuk, V.V., Kozlovsky, A.M., Travin, A.V., et al., Duration and geodynamic nature of giant Central Asian batholiths: geological and geochronological studies of the Khangai Batholith, Stratigraphy. Geol. Correlation, 2019, vol. 27, no. 1, pp. 70–102.

    Google Scholar 

  99. Zaitsev, N.S., Tectonics of Mongolia, Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii (Evolution of Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990, pp. 15–22.

    Google Scholar 

  100. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Ithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, vol. 1.

  101. Zorin, Yu.A., Sklyarov, E.V., Belichenko, V.G., and Mazukabzov, A.M., Island arc-back-arc basin evolution: implications for Late Riphean–Early Paleozoic geodynamic history of the Sayan-Baikal folded area, Russ. Geol. Geophys., 2009, vol. 50, no. 3, pp. 149–161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Yarmolyuk and A.B. Kuznetsov for detailed consideration and comments that significantly improved the manuscript.

Funding

This work was supported by the Russian Science Foundation (project no. 18-17-00229; U-Pb and Sm-Nd isotopic studies) and was made in the framework of the State Task of IPPG RAS no. FMNU-2019-0005 (geochemical studies), and ITiG of the Far Eastern Branch of the Russian Academy of Sciences (project no. AААА-А18-118020790046-0 (paleoreconstructions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kozakov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakov, I.K., Kovach, V.P., Salnikova, E.B. et al. Formation of the Neoproterozoic Continental Crust in the Structures of the Central Segment of the Central Asian Fold Belt. Petrology 29, 195–220 (2021). https://doi.org/10.1134/S0869591121020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121020053

Keywords:

Navigation