Skip to main content
Log in

Neoarchean Granitoids of the Hautavaara Structure, Karelia: Heterogeneous Lithosphere Melting in an Accretionary Orogen

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents newly acquired isotope-geochemical and U–Pb isotope zircon dating (SHRIMP) results on four posttectonic granitoid massifs in the southeastern part of the Karelian Granite–Greenstone Province (GGP) in the Fennoscandian Shield. The massifs are located near the Hautavaara Structure, in the southeastern part of the Mesoarchean (3.05–2.85 Ga) Vedlozero–Segozero Greenstone Belt, which is confined to the western margin of the Vodlozero crustal block with a Paleoarchean (TNdDM > 3.2 Ga) prehistory. All four massifs (Hautavaara, Chalka, Shuya, and Nyalmozero) were shown to have similar structural–tectonic settings, were emplaced nearly simultaneously (at 2745–2740 Ma), and display variations in the rock compositions that were predetermined by differences in the composition of the magma sources and the conditions of their derivation. The Hautavaara Massif in the central part of the structure and the Chalka Massif on its western margin are made up of moderately alkaline high-Mg granitoids (sanukitoids), whose initial diorite melts were derived by melting the lithospheric mantle metasomatized in an active-margin setting at 3.00–2.90 Ga. The Shuya granodiorites and Nyalmozero leucogranites, which are confined to the eastern flank of the structure, yield highly fractionated HREE patterns (Dyn/Ybn = 3.5 to 5.14), negative εNdT = –0.9 to –2.8, and were produced by melting a Mesoarchean crustal source at various depths. This source was similar to the 3.05- to 2.90-Ga felsic volcanics in the Hautavaara Structure. The Shuya granodiorites contain elevated Cr and Ni concentrations, suggesting that the melts were generated in the crust with the involvement of mafic magma, which was likely coeval with the primitive sanukitoids. The melting of the continental lithosphere at mantle and crustal levels in the Karelian GGP in the latest Neoarchean are thought to have occurred in an extensional environment during collapse of the collisional orogen, in accordance with the model (Laurent et al., 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Arestova, N.A., Chekulaev, V.P., Lobach-Zhuchenko, S.B., and Kucherovskii, G.A., Formation of the Archean Crust of the Ancient Vodlozero Domain (Baltic Shield), Stratigraphy. Geol. Correlation, 2015, vol. 23, no. 2, pp. 119–130.

    Article  Google Scholar 

  2. Beakhouse, G.P. and Davis, D.W., Evolution and tectonic significance of intermediate to felsic plutonism associated with the Helmo greenstone belt, Superior Provimce, Canada, Precambrian Res., 2005, vol. 137, pp. 61–92.

    Article  Google Scholar 

  3. Bibikova, E.V., Samsonov, A.V., Shchipanskii, A.A., et al., The Hisovaara Structure in the Northern Karelian Greenstone Belt as a Late Archean accreted island arc: isotopic geochronological and petrological evidence, Petrology, 2003, vol. 11, no. 3, pp. 261–290.

    Google Scholar 

  4. Bibikova, E.V., Petrova, A., and Claesson, S., The temporal evolution of the sanukitoids in the Karelian Craton, Baltic Shield: an ion microprobe U-Th-Pb isotopic study of zircons, Lithos, 2005, vol. 79, pp. 129–145.

    Article  Google Scholar 

  5. Black, L.P., Kamo, S.L., Allen, C.M., et al., TEMORA 1: a new zircon standard for phanerozoic U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  6. Chekulaev V.P. Archean “sanukitoids” on the Baltic Shield, Dokl. Earth Sci., 1999, vol. 369, no. 8, pp. 1137–1139.

    Google Scholar 

  7. Chekulaev, V.P., Arestova, N.A., Egorova, Yu.S., and Kucherovskii, G.A., Change of conditions of the formation of the Karelian Province of the Baltic Shield continental crust during transition from Meso- to Neoarchean: geochemical study results, Stratigraphy. Geol. Correlation, 2018, vol. 26, no. 3, pp. 243–260.

    Article  Google Scholar 

  8. Chekulaev, V.P., Arestova, N.A., and Egorova, Yu.S., Neoarchean granites of the Karelian Province: geological position, geochemistry, and origin, Regional. Geol. Metallogen., 2020, vol. 81, pp. 21–38.

    Google Scholar 

  9. Condie, K.C., Archean Greenstone Belts, Amsterdam: Elsevier, 1981.

    Google Scholar 

  10. Dmitrieva, A.V., Kuleshevich, L.V., and Vikhko, A.S., Petrochemical features and ore specialization of the Khautovaara massif, Southern Karelia, Tr. KarNTs RAS, 2016, no. 2, pp. 52–70.

  11. Gao, P., Zheng, Y.F., and Zhao, Z.F., Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis, Lithos, 2016, vol. 266, pp. 133–157.

    Article  Google Scholar 

  12. Gogolev, M.A., Geochemical typification of dacite–rhyolite magmatism of the central part of the Vedlozero–Segozero greenstone belt, Karelian Craton, Tr. KarNTs RAS, 2018, 11. S. 82-95.

    Google Scholar 

  13. Goldstein, S.J. and Jacobsen, S.B., Nd and Sm isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  14. Halla, J., Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern finland: pb and nd isotopic constraints on crust-mantle interactions, Lithos, 2005, vol. 79, pp. 161–178.

    Article  Google Scholar 

  15. Heilimo, E., Halla, J., and Huhma, H., Single-grain zircon U-Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province, Lithos, 2011, vol. 121, pp. 87–99.

    Article  Google Scholar 

  16. Höltta, P., Heilimo, E., Huhma, H., et al., The Archaean of the Karelia province in Finland, Geol. Surv. Finland. Spec. Paper, 2012, no. 54, pp. 21–73.

  17. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  18. Kotov, A.B., Kovach V.P., Salnikova, E.B., et al., Age and formation stages of continental crust of the central Aldan granulite terrane: U-Pb and Sm-Nd isotope data on granitoids, Petrologiya, 1995. vol. 3, no. 1, pp. 97–108.

  19. Kovalenko, A.V., Clemens, J.D., and Savatenkov, V.M., Petrogenetic constraints for the genesis of Archaean sanukitoid suites: geochemistry and isotopic evidence from Karelia, Baltic Shield, Lithos, 2005, vol. 79, pp. 147–160.

    Article  Google Scholar 

  20. Kozhevnikov V.N. Arkheiskie zelenokamennye poyasa Karel’skogo kratona kak akkretsionnye orogeny (Archean Greenstone Belts of the Karelian Craton as Accretionary Orogens), Petrozavodsk: IG KarNTs RAS, 2000.

  21. Kuleshevich, L.V., Slyusarev, V.D., and Lavrov, M.M., Noble metal mineralization of the Khautavaara–Vedlozero area, Geol. Polezn. Iskop. Karelii, 2009, vol. 12, pp. 12–25.

    Google Scholar 

  22. Kulikov, V.S., Simon, A.K., Kulikova, V.V., et al., Magmatic evolution of the Vodlozero block of the Karelian granite–greenstone terrane in the Archean, Geologiya i geokhronologiya dokembriya Vostochno-Evropeiskoi platform (Precambrian Geology and Geochronology of the East European Platform), Leningrad: Nauka, 1990, pp. 92–100.

    Google Scholar 

  23. Kusky, T.M., Collapse of Archaen orogens and the generation of late- to postkinematic granitoids, Geology, 1993, vol. 21, pp. 925–928.

    Article  Google Scholar 

  24. Larionov, A.N., Andreichev, V.A. and Gee, D., The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite, Geol. Soc., London, Spec. Publ., 2004, pp. 69–74.

  25. Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.

    Article  Google Scholar 

  26. Laurent, O., Martin, H., Moyen, J.F., and Doucelance, R., The diversity and evolution of Late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga, Lithos, 2014, vol. 205, pp. 208–235.

    Article  Google Scholar 

  27. Lobach-Zhuchenko, S.B., Chekulaev, V.P., Arestova, N.A., et al., Archean Terranes in Karelia: Geological and Isotopic–Geochemical Evidence, Geotectonics, 2000, vol. 34, no. 6, pp. 452–466.

    Google Scholar 

  28. Lobach-Zhuchenko, S.B., Chekulaev, V.P., Ivanikov, V.V., et al., Late Archean high-Mg and subalkaline granitoids and lamprophyres as indicator of gold mineralization in Karelia (Baltic Shield), Russia, Ore-Bearing Granites of Russia and Adjacent Countries, Moscow: IMGRE, 2000, pp. 193–211.

    Google Scholar 

  29. Lobach-Zhuchenko, S.B., Rollinson, H.R., Chekulaev, V.P., et al., The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin, Lithos, 2005, vol. 79, pp. 107–128.

    Article  Google Scholar 

  30. Lobach-Zhuchenko, S.B., Rollinson, H., Chekulaev, V.P., et al., Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: insights into Late Archaean mantle metasomatism, J. Petrol., 2008, vol. 49, pp. 393–420.

    Article  Google Scholar 

  31. Ludwig, K.R., SQUID. A User`s manual, Berkeley Geochronol. Center, Spec. Publ., 2001.

    Google Scholar 

  32. Ludwig, K.R., User’s manual for ISOPLOT 3.00. Geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Spec. Publ., 2003.

    Google Scholar 

  33. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  34. Martin, H., Moyen, J.-F., and Rapp, R.P., The sanukitoid series: magmatism at the Archaean–Proterozoic transition, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 2009, vol. 100, pp. 15–33.

    Article  Google Scholar 

  35. Matrenichev, V.A., Sergeev, S.A., Levchenkov, O.D., and Yakovleva, S.Z., Age of dacites of the Khautavaara greenstone structure, Central Karelia, Izv. Aakad. Nauk, Ser. Geol., 1990, no. 8, pp. 131–133.

  36. Mikkola, P., Salminen, P., Torppa, A., and Huhma, H., The 2.74 Ga Likamännikkö complex in uomussalmi, East Finland: lost between sanukitoids and truly alkaline rocks?, Lithos, 2011, vol. 1050, no. 125, pp. 716–728.

    Article  Google Scholar 

  37. Nosova, A.A., Samsonov, A.V., Larionova, Yu.O., et al., Archean age of gabbro and granite—biotite—amphibole—quartz metasomatites of the Vietukkalampi Au-PGE occurrence in the Khautavaara structure, Sb. materialov Mezhdunarodnoi konf. “Zoloto Fennoskandinavskogo shchita” (Proc. International Conference “Gold of the Fennoscandian Shield), Petrozavodsk: IG KarNTs RAS, 2013, pp. 131–134.

  38. Ovchinnikova, G.V., Matrenichev, V.A., Levchenkov, O.A., et al., U-Pb and Pb-Pb isotopic studies of acid volcanic rocks of the Khautavaara greenstone structure, Central Kaelia, Petrologiya, 1994, vol. 2, no. 3, pp. 266–281.

    Google Scholar 

  39. Pearce, J.A., Sources and settings of granitic rocks, Episodes, 1996, vol. 19, no. 4, pp. 120–125.

    Article  Google Scholar 

  40. Puchtel, I.S., Hofmann, A.W., Jochum, K.P., et al., The Kostomuksha greenstone belt, N.W. Baltic Shield: remnant of a Late Archean oceanic plateau?, Terra Nova, 1997, vol. 9, pp. 87–90.

    Article  Google Scholar 

  41. Puchtel, I.S., Hofmann, A.W., Amelin, Yu.V., et al., Combined mantle plume–island arc model for the formation of the 2.9 Ga Sumozero–Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 21, pp. 3579–3595.

    Article  Google Scholar 

  42. Puchtel, I.S., Touboul, M., Blichert-Toft, J., et al., Lithophile and siderophile element systematics of Earth’s mantle at the Archean–Proterozoic boundary: evidence from 2.4 Ga komatiites, Geochim. Cosmochim. Acta, 2016, vol. 180, pp. 227–255.

    Article  Google Scholar 

  43. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A., Eds., St. Petersburg: Nauka, 2005.

    Google Scholar 

  44. Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa, Chem. Geol., 1999, vol. 160, pp. 335–356.

    Article  Google Scholar 

  45. Rapp, R., Norman, M., Laporte, D., et al., Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt-rock reaction experiments at 3–4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids), J. Petrol., 2010, vol. 51, pp. 1237–1266.

    Article  Google Scholar 

  46. Rybakov, S.I., Svetova, A.I., Kulikov, V.S., et al., Vulkanizm arkheiskikh zelenokamennykh poyasov Karelii (Volcanism of Archean Greenstone Belts of Karelia), Leningrad: Nauka, 1981.

  47. Rybakov, S.I., Grishin, A.S., Kozhevnikov, V.N., et al. Metallogenicheskaya evolyutsiya arkheiskikh zelenokamennykh poyasov Karelii. Ch. 1. Vulkanizm, sedimentogenez, metamorfizm i metallogeniya (Metallogenic Evolution of Archean Greenstone Belts of Karelia. Part 1. Volcanism, Sedimetogenesis, Metamorphism, and Metallogeny), St. Petersburg: Nauka, 1993.

  48. Samsonov, A.V., Bibikova, E.V., and Puchtel, I.S., et al., Isotope and geochemical variations of the acid volcanics of the karelian greenstone belts and their geotectonic significance, Abstracts for the First International Symposium “Fennoscandian Geological Correlation,” St. Petersburg, 1996.

  49. Samsonov, A.V., Bibikova, E.V., Larionova, Yu.O., et al., Magnesian granitoids (sanukitoids) of the Kostomuksha area, Western Karelia: petrology, geochronology, and tectonic environment of formation, Petrology, 2004, vol. 12, no. 5, pp. 437–468.

    Google Scholar 

  50. Savko, K.A., Samsonov, A.V., Larionov, A.N., et al., 2.6 Ga high-Si rhyolites and granites in the Kursk domain, eastern Sarmatia: petrology and application for the Archaean palaeocontinental correlations, Precambrian Res., 2019, vol. 322, pp. 170–192.

    Article  Google Scholar 

  51. Sharpenok, L.N., Kostin, A.E., and Kukharenko, E.A., TAS-diagram total alkalis–silica for the chemical classification and diagnostics of plutonic rocks, Regional. Geol. Metallogen., 2013, vol. 56, pp. 40–50.

    Google Scholar 

  52. Slyusarev, V.D., Kuleshevich, L.V., and Lavrov, M.M., Noble metal mineralization in the gabbroid massif of the Lake Vietukkalampi area, Khautavaara structure, Mineralogiya, petrologiya i minerageniya dokembriiskikh kompleksov Karelii (Mineralogy, Petrology, and Metallogeny of the Precambrian Complexes of Karelia), Petrozavodsk: IG KarNTs RAS, 2007, pp. 112–116.

  53. Stepanova, A.V., Samsonov, A.V., Salnikova, E.B., et al., Paleoproterozoic continental MORB-type tholeiites in the Karelian craton: petrology, geochronology and tectonic setting, J. Petrol., 2014, vol. 55, no. 9, pp. 1719–1751.

    Article  Google Scholar 

  54. Stern, R.A., Hanson, G.N., and Shirey, S.B., Petrogenesis of mantle-derived, LILE-enriched archean monzodiorites and trachyandesites (sanukitoids) in southwestern superior province, Can. J. Earth Sci., 1989, vol. 26, pp. 1688–1712.

    Article  Google Scholar 

  55. Stern, R.A. and Hanson, G.N., Archaean high-mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin, J. Petrol., 1991, vol. 32, no. 1, pp. 201–238.

    Article  Google Scholar 

  56. Stevenson, R., Henry, P., and Gariepy, C., Assimilation–fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada, Precambrian Res., 1999, vol. 96, pp. 83–99.

    Article  Google Scholar 

  57. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London. Spec. Publ., 1989, no. 42, pp. 313–345.

  58. Svetov, S.A., Magmaticheskie sistemy zon perekhoda okean-kontinent v arkhee vostochnoi chasti Fennoskandinavskogo shchita (Archean Magmaic Systems of the Ocean–Continent Transition Zones in the Fennoscandian Shield), Petrozavodsk: IG KarNTs RAS, 2005.

  59. Svetov, S.A. and Huhma, H., Geochemistry and Sm–Nd systematics of the Archean komatiitic–tholeiitic associations of the Vedlozero–Segozero greenstone belt, Central Karelia, Dokl. Earth Sci., 1999, vol. 369, no. 9, pp. 1204–1206.

    Google Scholar 

  60. Svetov, S.A., Kudryashov, N.M., Ronkin, Yu.L., Huhma, H., Svetova, A.I., and Nazarova, T.N., Mesoarchean island-arc association in the Central Karelian Terrane, Fennoscandian Shield: new geochronological data, Dokl. Earth Sci., 2006, vol. 406, no. 1, pp. 103–106.

    Article  Google Scholar 

  61. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of rock and mineral composition: technique and assessment of result accuracy by the example of the Early Precambrian mafic complexes, Tr. KarNTs RAS, 2015, no. 7, pp. 54–73.

  62. Svetov, S.A. and Svetova, A.I., Archean subduction: marker rock associations and architecture, Materialy Vseros. konf. “Geologiya Karelii ot arkheya do nashikh dnei” (Proc. All-Russian Conference “Geology of Karelia from Archean to the Present Day”), Petrozavodsk: IG KarNTs RAS, 2011, pp. 22–32.

  63. Wark, D.A. and Watson, E.B., TitaniQ: a titanium-in-quartz geothermometer, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 743–754.

    Article  Google Scholar 

  64. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  65. Wiendenbeck, M., Alle, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  66. Williams, I.S., Applications of microanalytical techniques to understanding mineralizing processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  67. Zhang, L., Li, S., and Zhao, Q., A review of research on adakites, Int. Geol. Rev., 2019, vol. 63, pp. 1–18.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Corresponding Member of the Russian Academy of Sciences A.V. Samsonov for the careful review of the manuscript and for valuable comments expressed in the course of the discussions. The authors thank A.V. Stepanova for continuing assistance and aid when this research was carried out. A.V. Karvinen is thanked for preparing the samples. We also thank the staff of the Analytical Center at the Institute of Geology, Karelian Research Centre, Russian Academy of Sciences.

Funding

This study was carried out under government-financed research project AAAA-A18-118020290084-7 for the Institute of Geology, Karelian Research Centre, Russian Academy of Sciences, and was financially supported by the Russian Foundation for Basic Research, project no. 18-35-00447.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Dmitrieva or F. A. Gordon.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, A.V., Gordon, F.A., Lepekhina, E.N. et al. Neoarchean Granitoids of the Hautavaara Structure, Karelia: Heterogeneous Lithosphere Melting in an Accretionary Orogen. Petrology 29, 148–174 (2021). https://doi.org/10.1134/S086959112102003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959112102003X

Keywords:

Navigation