Skip to main content
Log in

Variational interior and interface transmission conditions: multidomain mixed Darcy/Stokes control problems

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Multidomain mixed pairs of coupled stationary constrained boundary value problems, are formulated variationally in frameworks of reflexive Banach spaces as macro-hybrid systems, and analyzed. Interior synchronizing and interface coupling transmission constraints are modeled in terms of Lagrange multipliers as solutions of dual variational subpotential maximal monotone inclusions. Existence and uniqueness results are established via resolvent fixed-point characterizations of the corresponding primal and dual macro-hybridized problems. Multimedia mixed mechanical subsurface-surface Darcy/Stokes incompressible flow coupled pairs with intrinsic distributed control constraints exemplify the general macro-hybrid mixed systems. Coupling dual-primal and primal-dual interface macro-hybrid mixed variational conditions are lastly developed and applied to the Darcy/Stokes multimedia pair model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams A, Fournier JF (2003) Sobolev spaces. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Alduncin G (1989) Subdifferential and variational formulations of boundary value problems. Comput Methods Appl Mech Eng 72:173–186

    Article  MathSciNet  Google Scholar 

  • Alduncin G (1997) On Gabay’s Algorithms for Mixed Variational Inequalities. Appl Math Optim 35:21–24

    MathSciNet  MATH  Google Scholar 

  • Alduncin G (2005) Composition duality methods for mixed variational inclusions. Appl Math Optim 52:311–348

    Article  MathSciNet  Google Scholar 

  • Alduncin G (2007) Macro-hybrid variational formulations of constrained boundary value problems. Numer Funct Anal Optim 28:751–774

    Article  MathSciNet  Google Scholar 

  • Alduncin G (2010) Variational formulations of nonlinear constrained boundary value problems. Nonlinear Anal 72:2639–2644

    Article  MathSciNet  Google Scholar 

  • Alduncin G (2011) Primal and dual evolution macro-hybrid mixed variational inclusions. Int J Math Anal (Ruse) 5:1631–1664

    MathSciNet  MATH  Google Scholar 

  • Alduncin G (2012) Mixed variational modeling of multiphase flow and transport in the subsurface. Far East J Appl Math 71:1–42

    MathSciNet  MATH  Google Scholar 

  • Alduncin G (2014) Fixed-point variational existence analysis of evolution mixed inclusions. Int J Math Anal (Ruse) 8:1833–1846

    Article  Google Scholar 

  • Alduncin G (2017) Proximation penalty-duality algorithms for mixed optimality conditions. Fixed Point Theory Appl 19:1775–1791

    Article  MathSciNet  Google Scholar 

  • Badia S, Quaini A, Quarteroni A (2009) Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J Comput Phys 228:7986–8014

    Article  MathSciNet  Google Scholar 

  • Barbu V (2010) Nonlinear differential equations of monotone types in banach spaces. Springer, New York

    Book  Google Scholar 

  • Beavres GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207

    Article  Google Scholar 

  • Cesmelioglu A, Giraul V, Rivière B (2013) Time-dependent coupling of Navier-Stokes and Darcy flows. Math Modelling Numer Anal 47:539–554

    Article  MathSciNet  Google Scholar 

  • Chidyagwai P, Riviére B (2009) On the solution of the coupled NavierStokes and Darcy equations. Comput Methods Appl Mech Eng 198:3806–3820

    Article  Google Scholar 

  • Cimolin F, Discacciati M (2013) Navier-Stokes/Forchheimer models for filtration through porous media. Appl Numer Math 72:205–224

    Article  MathSciNet  Google Scholar 

  • Dawson C, Wheeler S, Sun MF (2004) Compatible algorithms for coupled flow and transport. Comput Methods Appl Mech Eng 5:1922565–1932580

    MathSciNet  MATH  Google Scholar 

  • Dean RH, Stone CM (2006) Minkoff SE A comparison of techniques for coupling porous flow and geomechanics. SPE J 11:132–140

    Article  Google Scholar 

  • Discacciati M, Miglio E, Quarteroni A (2002) Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math 43:57–74

    Article  MathSciNet  Google Scholar 

  • Discacciativ M, Quarteroni A (2003) Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi F et al (eds) Numerical analysis and advanced applications-ENUMATH 2001. Springer, Milan, pp 3–20

    Google Scholar 

  • Du G, Zuo L (2017) Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Mathematica Scientia 37B:1331–1347

    Article  MathSciNet  Google Scholar 

  • Duvaut G, Lions JL (1972) Les Inéquations en Méchanique et en Physique. Dunod, Paris

    MATH  Google Scholar 

  • Ervin VJ, Jenkins EW, Hyesuk L (2014) Approximation of the StokesDarcy System by Optimization. J Sci Comput 59:775794

    Article  Google Scholar 

  • Feng W, He X, Wang Z, Zhang X (2012) Non-iterative domain decomposition methods for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition. Appl Math Comput 219:453463

    MathSciNet  MATH  Google Scholar 

  • Gabay D (1982) Application de la méthode des multiplicateurs aux inéquations variationnelles. In: Fortin M, Glowinski R (eds) Méthodes de Lagrangien Augmenté. Dunod-Bordas, Paris, pp 279–307

    Google Scholar 

  • Girault V (1992) The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of \(R^3\). J Fac Sci Univ Tokyo Sect IA Math 39:279–307

    MathSciNet  MATH  Google Scholar 

  • Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations. Springer, Berlin

    Book  Google Scholar 

  • Girault V, Riviére B (2009) DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Shaffman interface condition. SIAM Numer Anal 47:2052–2089

    Article  MathSciNet  Google Scholar 

  • Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continuum. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hyesuk L, Kelsey R (2014) Least squares approach for the time-dependent nonlinear StokesDarcy flow. Comput Math Appl 67:1806–1815

    Article  MathSciNet  Google Scholar 

  • Kim J, Tchelepi H, Juanes R (2011a) Stability and convergence of sequentiel methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput Methods Appl Mech Eng 200:1591–1606

    Article  Google Scholar 

  • Kim J, Tchelepi HA, Juanes R (2011b) Accuracy and efficiency of sequential methods for coupled flow and geomechanics. SPE J 16:249–262

    Article  Google Scholar 

  • Layton W, Schieweck F, Yotov I (2003) Coupling fluid flow with porous media flow. SIAM J Numer Anal 40:2195–2218

    Article  MathSciNet  Google Scholar 

  • Mikelić A, Wheeler MF (2013) Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci 17:455–461

    Article  MathSciNet  Google Scholar 

  • Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser, Boston

    Book  Google Scholar 

  • Rivière B (2005) Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J Sci Comput 22:479–500

    Article  MathSciNet  Google Scholar 

  • Rockafellar RT (1970) On the maximal monotonicity of subdifferential mappings. Pacific J Math 33:209–216

    Article  MathSciNet  Google Scholar 

  • Saffman P (1971) On the boundary condition at the surface of a porous media. Stud Appl Math 50:292–315

    Google Scholar 

  • Temam R (1970) Analyse Numérique. Presses Universitaires de France, Paris

    MATH  Google Scholar 

  • Yosida K (1974) Functional analysis. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Alduncin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alduncin, G. Variational interior and interface transmission conditions: multidomain mixed Darcy/Stokes control problems. Optim Eng 23, 797–826 (2022). https://doi.org/10.1007/s11081-021-09606-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-021-09606-2

Keywords

Mathematics Subject Classification

Navigation