Skip to main content
Log in

Spectral Stability for the Peridynamic Fractional p-Laplacian

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work we analyze the behavior of the spectrum of the peridynamic fractional p-Laplacian, \((-\Delta _p)_{\delta }^{s}\), under the limit process \(\delta \rightarrow 0^+\) or \(\delta \rightarrow +\infty \). We prove spectral convergence to the classical p-Laplacian under a suitable scaling as \(\delta \rightarrow 0^+\) and to the fractional p-Laplacian as \(\delta \rightarrow +\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audoux, B., Bobkov, V., Parini, E.: On multiplicity of eigenvalues and symmetry of eigenfunctions of the \(p\)-Laplacian. Topol. Methods Nonlinear Anal. 49, 1 (2018)

    Article  MathSciNet  Google Scholar 

  2. Azorero, J.P.G., Alonso, I.P.: Existence and nonuniqueness for the \(p\)-Laplacian. Commun. Partial Differ. Equ. 12, 126–202 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bellido, J.C., Mora-Corral, C.: Existence for nonlocal variational problems in peridynamics. SIAM J. Math. Anal. 46, 890–916 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bellido, J.C., Mora-Corral, C., Pedregal, P.: Hyperelasticity as a \(\Gamma \)-limit of peridynamics when the horizon goes to zero. Calc. Var. Partial Differ. Equ. 54, 1643–1670 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bellido, J.C., Ortega, A.: A restricted nonlocal operator bridging together the Laplacian and the Fractional Laplacian. Calc. Var. Partial Differ. Equ. (2020, To appear)

  6. Belloni, M., Kawohl, B.: A direct uniqueness proof for equations involving the \(p\)-Laplace operator. Manuscr. Math. 109, 229–231 (2002)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)

  8. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford (2002)

  9. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian. Adv. Calc. Var. 9, 323–355 (2016)

    Article  MathSciNet  Google Scholar 

  10. Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional \(p\)-Laplacian. Discret. Contin. Dyn. Syst. 36, 1813–1845 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The Beginning of the Fučik spectrum for the \(p\)-Laplacian. J. Differ. Equ. 159, 212–238 (1999)

    Article  Google Scholar 

  12. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser Boston, Boston (1993)

  13. Degiovanni, M., Marzocchi, M.: Limit of minimax values under \(\Gamma \)-convergence. Electron. J. Differ. Equ. 2014, 1–19 (2014)

    Article  MathSciNet  Google Scholar 

  14. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fernández Bonder, J., Salort, A.: Stability of solutions for nonlocal problems. Nonlinear Anal. 200, 112080, 13 (2020)

  17. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5, 373–386 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional p-eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kawohl, B., Lindqvist, P.: Positive eigenfunctions for the \(p\)-Laplace operator revisited. Analysis 26, 539–544 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2013)

    Article  MathSciNet  Google Scholar 

  21. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  22. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was carried out while the second author was a postdoctoral researcher at Universidad de Castilla-La Mancha in Ciudad Real funded by project MTM2017-83740-P of the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (Spain), which supported this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellido, J.C., Ortega, A. Spectral Stability for the Peridynamic Fractional p-Laplacian. Appl Math Optim 84 (Suppl 1), 253–276 (2021). https://doi.org/10.1007/s00245-021-09768-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09768-6

Keywords

Mathematics Subject Classification

Navigation