Skip to main content
Log in

Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article, we deal with the existence of non-negative solutions of the class of following non local problem

$$ \left \{ \textstyle\begin{array}{l} \quad - M\left (\displaystyle \int _{\mathbb{R}^{n}}\int _{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{\frac{n}{s}}}{|x-y|^{2n}}~dxdy\right ) (-\Delta )^{s}_{n/s} u=\left (\displaystyle \int _{\Omega }\frac{G(y,u)}{|x-y|^{\mu }}~dy \right )g(x,u) \; \text{in}\; \Omega , \\ \quad \quad u =0\quad \text{in} \quad \mathbb{R}^{n} \setminus \Omega , \end{array}\displaystyle \right . $$

where \((-\Delta )^{s}_{n/s}\) is the \(n/s\)-fractional Laplace operator, \(n\geq 1\), \(s\in (0,1)\) such that \(n/s\geq 2\), \(\Omega \subset \mathbb{R}^{n}\) is a bounded domain with Lipschitz boundary, \(M:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) and \(g:\Omega \times \mathbb{R}\rightarrow \mathbb{R}\) are continuous functions, where \(g\) behaves like \(\exp ({|u|^{\frac{n}{n-s}}})\) as \(|u|\rightarrow \infty \). The key feature of this article is the presence of Kirchhoff model along with convolution type nonlinearity having exponential growth which appears in several physical and biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Yang, M.: Existence of solutions for a nonlocal variational problem in \(\mathbb{R}^{2}\) with exponential critical growth. J. Convex Anal. 24(4), 1197–1215 (2017)

    MathSciNet  Google Scholar 

  2. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^{2}\). J. Differ. Equ. 261(3), 1933–1972 (2016)

    Article  Google Scholar 

  3. Applebaum, D.: Lévy processes—from probability to finance and quantum groups. Not. Am. Math. Soc. 51(11), 1336–1347 (2004)

    MATH  Google Scholar 

  4. Arora, R., Giacomoni, J., Mukherjee, T., Sreenadh, K.: \(n\)-Kirchhoff-Choquard equations with exponential nonlinearity. Nonlinear Anal. 108, 113–144 (2019)

    Article  MathSciNet  Google Scholar 

  5. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problems. Interfaces Free Bound. 16, 419–458 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional \(p\)-Laplacian. Discrete Contin. Dyn. Syst. 36, 439–455 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  8. Caffarelli, L.: Non-local diffusions, drifts and games. In: Nonlinear Partial Differential Equations. Abel Symp., vol. 7, pp. 37–52. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  10. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  11. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Fractional elliptic equations with critical exponential nonlinearity. Adv. Nonlinear Anal. 5(1), 57–74 (2016)

    Article  MathSciNet  Google Scholar 

  12. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Fractional Kirchhoff equation with critical exponential nonlinearity. Complex Var. Elliptic Equ. 61(9), 1241–1266 (2016)

    Article  MathSciNet  Google Scholar 

  13. Goyal, S., Sreenadh, K.: Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions. Proc. Indian Acad. Sci. Math. Sci. 125(4), 545–558 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kirchhoff, G.: Mechanik. Vorlesungen über mathematische Physik. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  15. Li, F., Gao, C., Zhu, X.: Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity. J. Math. Anal. Appl. 448, 60–80 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

  17. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  18. Lü, D.f.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35–48 (2014)

    Article  MathSciNet  Google Scholar 

  19. Martinazzi, L.: Fractional Adams-Moser-Trudinger type inequalities. Nonlinear Anal. 127, 263–278 (2015)

    Article  MathSciNet  Google Scholar 

  20. Moroz, V., Schaftingen, J.V.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19(1), 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  21. Parini, E., Ruf, B.: On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 29(2), 315–319 (2018)

    Article  MathSciNet  Google Scholar 

  22. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  23. Perera, K., Squassina, M., Yang, Y.: Bifurcation and multiplicity results for critical fractional \(p\)-Laplacian problems. Math. Nachr. 289(2–3), 332–342 (2016)

    Article  MathSciNet  Google Scholar 

  24. Pucci, P., Xiang, M., Zhang, B.: Existence results for Schödinger-Choquard-Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12(3), 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  25. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  26. Xiang, M., Zhang, B., Repovs, D.: Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity. Nonlinear Anal. 186, 74–98 (2018)

    Article  Google Scholar 

  27. Xiang, M., Rădulescu, V.D., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58(2), 57 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by Science and Engineering Research Board, Department of Science and Technology, Government of India, Grant number: ECR/2017/002651. The second author wants to thank Bennett University for its hospitality during her visit there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuhina Mukherjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Mukherjee, T. Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian. Acta Appl Math 172, 11 (2021). https://doi.org/10.1007/s10440-021-00402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00402-9

Keywords

Mathematics Subject Classification (2010)

Navigation