Skip to main content
Log in

Linear, Second-Order Accurate, and Energy Stable Scheme for a Ternary Cahn–Hilliard Model by Using Lagrange Multiplier Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We develop a second-order accurate, energy stable, and linear numerical method for a ternary Cahn–Hilliard (CH) model. The proposed scheme is an extension of typical Lagrange multiplier approach for binary CH system. The second-order backward difference formula (BDF2) is applied to construct time discretization. We theoretically prove the mass conservation, unique solvability, and energy stability of the proposed scheme. We efficiently solve the resulting discrete linear system by using a multigrid algorithm. The numerical solutions demonstrate that the proposed scheme is practically stable and second-order accurate in time and space. Moreover, we can use the proposed scheme as an effective solver to calculate the ternary CH equations in ternary phase-field fluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  2. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guillén-González, F., Tierra, G.: Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J. Comput. Phys. 354(1), 67–85 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avalos, E., Teramoto, T., Komiyama, H., Yabu, H., Nishiura, Y.: Transformation of block copolymer nanoparticles from ellipsoids with striped lamellae into onionlike spheres and dynamical control via coupled Cahn–Hilliard equations. ACS Omega 3, 1304–1314 (2018)

    Article  Google Scholar 

  5. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution. MRS Proceedings, vol. 529, pp. 39–46. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  6. Lee, S., Shin, J.: Energy stable compact scheme for Cahn–Hilliard equation with periodic boundary condition. Comput. Math. Appl. 77, 189–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Furihata, D., Matsuo, T.: A stable, convergent, conservative and linear finite difference scheme for the Cahn–Hilliard equation. Jpn. J. Ind. Appl. Math. 20, 65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Appadu, A.R., Djoko, J.K., Gidey, H.H., Lubuma, J.M.S.: Analysis of multilevel finite volume approximation of 2D convective Cahn–Hilliard equation. Jpn. J. Ind. Appl. Math. 34, 253–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, X., Liu, C.: On the existence of global attractor for 3D viscous Cahn–Hilliard equation. Acta Appl. Math. 138, 199–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Y., Lee, H.G., Xia, B., Kim, J.: A compact fourth-order finite difference scheme for the three-dimensional Cahn–Hilliard equation. Comput. Phys. Commun. 200, 108–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Z.R., Qiao, Z.H.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, F., Tang, T., Xie, H.: Parameter-free time adaptivity based on energy evolution for the Cahn–Hilliard equation. Commun. Comput. Phys. 19, 1542–1563 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70, 301–341 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillén-González, F., Tierra, G.: On linear schemes for the Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Z., Li, X.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Li, R., Mei, L., Lin, Y.: A second-order decoupled energy stable numerical scheme for Cahn–Hilliard–Hele–Shaw system. Appl. Numer. Math. 157, 338–355 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Kim, J., Wang, N.: An unconditionally energy-stable second-order time-accurate scheme for the Cahn–Hilliard equation on surfaces. Commun. Nonlinear Sci. Numer. Simul. 53, 213–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shin, J., Lee, H.G., Lee, J.Y.: Convex splitting Runge–Kutta methods for phase-field models. Comput. Math. Appl. 73(11), 2388–2403 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shin, J., Lee, H.G., Lee, J.Y.: Unconditionally stable methods for gradient flow using convex splitting Runge–Kutta scheme. J. Comput. Phys. 347(15), 367–381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhattacharyya, S., Abinandanan, T.A.: A study of phase separation in ternary alloys. Bull. Mater. Sci. 26, 193 (2003)

    Article  Google Scholar 

  21. Liang, H., Xu, J., Chen, J., Chai, Z., Shi, B.: Lattice Boltzmann modeling of wall-bounded ternary fluid flow. Appl. Math. Model. 73, 487–513 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, C.Y., Ding, H., Gao, P., Wu, Y.L.: Diffuse interface simulation of ternary fluids in contact with solid. J. Comput. Phys. 309, 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H.R., Zhang, C.Y., Gao, P., Lu, X.Y., Ding, H.: On the maximal spreading of impacting compound drops. J. Fluid Mech. 854, R6 (2018)

    Article  MATH  Google Scholar 

  24. Shi, Y., Wang, X-P.: Modeling and simulation of dynamics of three-component flows on solid surface. Jpn. J. Ind. Appl. Math. 31, 611–631 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeong, D., Yang, J., Kim, J.: A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains. Commun. Nonlinear Sci. Numer. Simul. 73, 217–228 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, S.: Mathematical model of contractile ring-driven cytokinesis in a three-dimensional domain. Bull. Math. Biol. 80(3), 583–597 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Wang, J., Lu, B., Jeong, D., Kim, J.: Multicomponent volume reconstruction from slice data using a modified multicomponent Cahn–Hilliard system. Pattern Recognit. 93, 124–133 (2019)

    Article  Google Scholar 

  28. Lee, H.G., Choi, J.W., Kim, J.: A practically unconditionally gradient stable scheme for the \(N\)-component Cahn–Hilliard system. Physica A 391, 1009–1019 (2012)

    Article  Google Scholar 

  29. Yang, J., Kim, J.: An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Commun. Nonlinear Sci. Numer. Simul. 87, 105276 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, J.: Phase field computations for ternary fluid flows. Comput. Methods Appl. Mech. Eng. 196, 4779–4788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, H.G., Kim, J.: An efficient and accurate numerical algorithm for the vector-valued Allen–Cahn equations. Comput. Phys. Commun. 183, 2107–2115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aihara, S., Takaki, T., Takada, N.: Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Comput. Fluids 178(15), 141–151 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, H.G., Kim, J.: Buoyancy-driven mixing of multi-component fluids in two-dimensional tilted channels. Eur. J. Mech. B, Fluids 42, 37–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, H.G., Kim, J.: Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids. Eur. J. Mech. B, Fluids 49, 77–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trottenberg, H., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2001)

    MATH  Google Scholar 

  36. Liu, Z.: Optimal multigrid methods with new transfer operators based on finite difference approximations. Acta Appl. Math. 111, 83–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for ternary Cahn–Hilliard systems. Commun. Math. Sci. 2(1), 53–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y., Choi, J-I., Kim, J.: Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. J. Comput. Phys. 323, 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim, J.: An augmented projection method for the incompressible Navier–Stokes equations in arbitrary domains. Int. J. Comput. Methods 2(2), 201–212 (2005)

    Article  MATH  Google Scholar 

  41. Li, H-L., Liu, H-R., Hang, D.: A fully 3D simulation of fluid-structure interaction with dynamics wetting and contact angle hysteresis. J. Comput. Phys. 420, 109709 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Yang is supported by China Scholarship Council (201908260060). The corresponding author (J.S. Kim) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1003053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we briefly describe the first-order time-accurate and fully discrete scheme. Based on a backward Euler formula, we discretize Eqs. (8)–(10) to be

$$\begin{aligned} \frac{c^{n+1}_{k,ij}-c^{n}_{k,ij}}{\Delta t} =& \Delta _{d} \mu ^{n+1}_{k,ij}, \end{aligned}$$
(72)
$$\begin{aligned} \mu ^{n+1}_{k,ij} =& -\epsilon ^{2}\Delta _{d} c^{n+1}_{k,ij} + q^{n+1}_{k,ij}c^{n}_{k,ij} - \frac{1}{2}q^{n+1}_{k,ij} + \beta ({\mathbf {c}}^{n}_{ij}), \end{aligned}$$
(73)
$$\begin{aligned} \frac{q^{n+1}_{k,ij}-q^{n}_{k,ij}}{\Delta t} =& (2c^{n+1}_{k,ij}-1) \frac{c^{n+1}_{k,ij}-c^{n}_{k,ij}}{\Delta t},~~~\mbox{for}~k = 1,2,3. \end{aligned}$$
(74)

The periodic or homogeneous Neumann boundary is considered. The energy stability, mass conservation, and unique solvability of the above scheme can be proved by following same procedures described in Sect. 3. We leave them to interested readers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kim, J. Linear, Second-Order Accurate, and Energy Stable Scheme for a Ternary Cahn–Hilliard Model by Using Lagrange Multiplier Approach. Acta Appl Math 172, 10 (2021). https://doi.org/10.1007/s10440-021-00405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00405-6

Keywords

Navigation