Skip to main content

Advertisement

Log in

Crowd anomaly detection with LSTMs using optical features and domain knowledge for improved inferring

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the increasing population, the probability of occurrence of different kinds of crowd anomalies gets frequent. Blockage on roads, the lighting condition, and the uneven movement of humans and vehicles makes it a tough and challenging problem. The paper proposes the combined use of a convolutional neural network and bidirectional LSTM to solve the task. CNN helps extract frame-level features of the optical flow over the video evaluated by the Lucas Kanade algorithm. A novel approach of improving the predicted class with the domain knowledge of datasets is also performed. The proposed methodology is tested on the crowd anomaly dataset's benchmark datasets, namely UCSD Ped-1 and UCSD Ped-2, and it outperforms various other existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hettiarachchi, A.L., Thathsarani, H.O., Wickramasinghe, P.U., Wickramasuriya, D.S., Rodrigo, R.: Extensible video surveillance software with simultaneous event detection for low and high density crowd analysis. In: 7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, pp. 1–6 (2014). https://doi.org/10.1109/ICIAFS.2014.7069590

  2. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. (2008). https://doi.org/10.1109/TCSVT.2008.2005599

    Article  Google Scholar 

  3. Tung, F., Zelek, J.S., Clausi, D.A.: Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. (2011). https://doi.org/10.1016/j.imavis.2010.11.003

    Article  Google Scholar 

  4. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. (2017). https://doi.org/10.1109/TIP.2017.2670780

    Article  MathSciNet  MATH  Google Scholar 

  5. Xie, S., Zhang, X., Cai, J.: Video crowd detection and abnormal behavior model detection based on machine learning method. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-018-3692-x

    Article  Google Scholar 

  6. Ojha, N., Vaish, A.: Spatiooral anomaly detection in crowd movement using SIFT. In: 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, pp. 646–654 (2018). https://doi.org/10.1109/ICISC.2018.8398878

  7. Singh, K., Rajora, S., Vishwakarma, D.K., Tripathi, G., Kumar, S., Walia, G.S.: Crowd anomaly detection using aggregation of ensembles of fine-tuned ConvNets. Neurocomputing 371, 188–198 (2020). https://doi.org/10.1016/j.neucom.2019.08.059

    Article  Google Scholar 

  8. Zhuang, N., Ye, J., Hua, K.A.: Convolutional DLSTM for crowd scene understanding. In: Proc.—2017 IEEE Int. Symp. Multimedia, ISM 2017, vol. 2017-Janua, pp. 61–68. https://doi.org/10.1109/ISM.2017.19 (2017)

  9. Dhole, H., Sutaone, M., Vyas, V.: Anomaly detection using convolutional spatiotemporal autoencoder. In: 2019 10th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2019, pp. 1–5. https://doi.org/10.1109/ICCCNT45670.2019.8944523 (2019)

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. (1997). https://doi.org/10.1109/78.650093

    Article  Google Scholar 

  12. Feng, Y., Yuan, Y., Lu, X.: Learning deep event models for crowd anomaly detection. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2016.09.063

    Article  Google Scholar 

  13. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: British Machine Vision Conference (BMVC), pp 8.1–8.12 (2015). https://doi.org/10.5244/c.29.8

  14. Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intell. (2014). https://doi.org/10.1109/TPAMI.2013.111

    Article  Google Scholar 

  15. Xu, D., Song, R., Wu, X., Li, N., Feng, W., Qian, H.: Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts. Neurocomputing 143, 144–152 (2014). https://doi.org/10.1016/j.neucom.2014.06.011

    Article  Google Scholar 

  16. Cong, Y., Yuan, J., Tang, Y.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013). https://doi.org/10.1109/TIFS.2013.2272243

    Article  Google Scholar 

  17. Revathi, A.R., Kumar, D.: An efficient system for anomaly detection using deep learning classifier. Signal Image Video Process. 11(2), 291–299 (2017). https://doi.org/10.1007/s11760-016-0935-0

    Article  Google Scholar 

  18. Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: AnomalyNet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. (2019). https://doi.org/10.1109/TIFS.2019.2900907

    Article  Google Scholar 

  19. Chu, W., Xue, H., Yao, C., Cai, D.: Sparse coding guided spatiotemporal feature learning for abnormal event detection in large videos. IEEE Trans. Multimed. 21(1), 246–255 (2019). https://doi.org/10.1109/TMM.2018.2846411

    Article  Google Scholar 

  20. Khan, M.U.K., Park, H.S., Kyung, C.M.: Rejecting motion outliers for efficient crowd anomaly detection. IEEE Trans. Inf. Forensics Secur. 14(2), 541–556 (2018). https://doi.org/10.1109/TIFS.2018.2856189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Vishwakarma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabih, M., Vishwakarma, D.K. Crowd anomaly detection with LSTMs using optical features and domain knowledge for improved inferring. Vis Comput 38, 1719–1730 (2022). https://doi.org/10.1007/s00371-021-02100-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02100-x

Keywords

Navigation