Skip to main content
Log in

A Spectral Collocation Method for Computer Virus Spread Case of Delayed Optimal Control Problem

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this essay, a method is presented for approximating the optimal control problem (OCP) with nonlinear delay differential equations using global collocation at Legendre–Gauss–Radau points. This OCP models the spread of the computer virus. The operational matrices and collocation method together with hybrid Legendre polynomials and block-pulse functions are applied to discretize the model and convert it into a large-scale finite-dimensional nonlinear programming that can be solved by the existing well-developed methods in Matlab software. The numerical simulations show that the proposed collocation method leads to high precision solutions. Finally, the effects of the parameters that appeared in the model are analyzed. The experimental results demonstrate that the strategy for increasing the failure and the retrieval rates and decreasing the epidemic rate and the number of new computers gives a considerable influence on controlling and restraining the propagation of computer viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: B. A. Huberman (ed.) Computation: the micro and the macro view, pp. 71–102. World Scientific (1992)

  2. Kephart, J., White, S.: IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343–359. IEEE, Los Alamitos (1991)

    Google Scholar 

  3. Ren, J., Yang, X., Zhu, Q., Yang, L.X., Zhang, C.: A novel computer virus model and its dynamics. Nonlinear Anal. Real World Appl. 13(1), 376–384 (2012)

    Article  MathSciNet  Google Scholar 

  4. Gan, C., Yang, X., Liu, W., Zhu, Q.: A propagation model of computer virus with nonlinear vaccination probability. Commun. Nonlinear Sci. Numer. Simul. 19(1), 92–100 (2014)

    Article  MathSciNet  Google Scholar 

  5. Yuan, H., Chen, G., Wu, J., Xiong, H.: Towards controlling virus propagation in information systems with point-to-group information sharing. Decis. Support Syst. 48(1), 57–68 (2009)

    Article  Google Scholar 

  6. Mishra, B.K., Jha, N.: Seiqrs model for the transmission of malicious objects in computer network. Appl. Math. Model. 34(3), 710–715 (2010)

    Article  MathSciNet  Google Scholar 

  7. Yang, L.X., Yang, X.: The spread of computer viruses under the influence of removable storage devices. Appl. Math. Comput. 219(8), 3914–3922 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Zhu, Q., Yang, X., Yang, L.X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73(3), 1433–1441 (2013)

    Article  MathSciNet  Google Scholar 

  9. Mishra, B.K., Saini, D.K.: Seirs epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188(2), 1476–1482 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Yang, X., Yang, L.X.: Towards the epidemiological modeling of computer viruses. Discrete Dyn. Nat. Soc. (2012). https://doi.org/10.1155/2012/259671

  11. Billings, L., Spears, W.M., Schwartz, I.B.: A unified prediction of computer virus spread in connected networks. Phys. Lett. A 297(3–4), 261–266 (2002)

    Article  MathSciNet  Google Scholar 

  12. Zhu, Q., Yang, X., Ren, J.: Modeling and analysis of the spread of computer virus. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5117–5124 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate. Appl. Math. Comput. 222, 265–274 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Gan, C., Yang, X., Zhu, Q., Jin, J., He, L.: The spread of computer virus under the effect of external computers. Nonlinear Dyn. 73(3), 1615–1620 (2013)

    Article  MathSciNet  Google Scholar 

  15. Yuan, H., Chen, G.: Network virus-epidemic model with the point-to-group information propagation. Appl. Math. Comput. 206(1), 357–367 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Yang, L.X., Yang, X.: A new epidemic model of computer viruses. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1935–1944 (2014)

    Article  MathSciNet  Google Scholar 

  18. Yang, L.X., Yang, X.: The effect of infected external computers on the spread of viruses: a compartment modeling study. Phys. A Stat. Mech. Appl. 392(24), 6523–6535 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ren, J., Yang, X., Yang, L.X., Xu, Y., Yang, F.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1), 74–79 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zhang, C., Zhao, Y., Wu, Y.: An impulse model for computer viruses. Discrete dynamics in nature and society. Discrete Dyn. Nat. Soc. 1–13 (2012)

  21. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)

    Article  Google Scholar 

  22. Shi, H., Duan, Z., Chen, G.: An sis model with infective medium on complex networks. Phys. A Stat. Mech. Appl. 387(8–9), 2133–2144 (2008)

    Article  Google Scholar 

  23. d’Onofrio, A.: A note on the global behaviour of the network-based sis epidemic model. Nonlinear Anal. Real World Appl. 9(4), 1567–1572 (2008)

    Article  MathSciNet  Google Scholar 

  24. Draief, M., Ganesh, A., Massoulié, L.: Thresholds for virus spread on networks. Ann. Appl. Probab. 18(2), 359–378 (2008)

    Article  MathSciNet  Google Scholar 

  25. Griffin, C., Brooks, R.: A note on the spread of worms in scale-free networks. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36(1), 198–202 (2006)

    Article  Google Scholar 

  26. Yang, L.X., Yang, X., Liu, J., Zhu, Q., Gan, C.: Epidemics of computer viruses: a complex-network approach. Appl. Math. Comput. 219(16), 8705–8717 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Kazeem, O., Samson, O., Ebenezer, B.: Optimal control analysis of computer virus transmission. Int. J. Netw. Secur. 20(5), 971–982 (2018)

    Google Scholar 

  28. Sharma, S., Mondal, A., Pal, A., Samanta, G.: Stability analysis and optimal control of avian influenza virus a with time delays. Int. J. Dyn. Control 6(3), 1351–1366 (2018)

    Article  MathSciNet  Google Scholar 

  29. Chen, L., Hattaf, K., Sun, J.: Optimal control of a delayed slbs computer virus model. Phys. A Stat. Mech. Appl. 427, 244–250 (2015)

    Article  MathSciNet  Google Scholar 

  30. Darajat, P.P., Suryanto, A., Widodo, A.: Optimal control on the spread of slbs computer virus model. Int. J. Pure Appl. Math. 107(3), 749–758 (2016)

    Article  Google Scholar 

  31. Ren, J., Xu, Y., Zhang, C.: Optimal control of a delay-varying computer virus propagation model. Discrete Dyn. Nat. Soc. (2013). https://doi.org/10.1155/2013/210219

  32. Gan, C., Yang, M., Zhang, Z., Liu, W.: Global dynamics and optimal control of a viral infection model with generic nonlinear infection rate. Discrete Dyn. Nat. Soc. (2017). https://doi.org/10.1155/2017/7571017

  33. Zhu, Q., Yang, X., Yang, L.X., Zhang, C.: Optimal control of computer virus under a delayed model. Appl. Math. Comput. 218(23), 11613–11619 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Bi, J., Yang, X., Wu, Y., Xiong, Q., Wen, J., Tang, Y.Y.: On the optimal dynamic control strategy of disruptive computer virus. Discrete Dyn. Nat. Soc. (2017). https://doi.org/10.1155/2017/8390784

  35. De Groote, F., Kinney, A.L., Rao, A.V., Fregly, B.J.: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10), 2922–2936 (2016)

    Article  Google Scholar 

  36. Jiang, G., Yang, Q.: Bifurcation analysis in an sir epidemic model with birth pulse and pulse vaccination. Appl. Math. Comput. 215(3), 1035–1046 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Shi, R., Jiang, X., Chen, L.: The effect of impulsive vaccination on an sir epidemic model. Appl. Math. Comput. 212(2), 305–311 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Cesari, L.: An existence theorem in problems of optimal control. J. Soc. Ind. Appl. Math. Ser. Control 3(1), 7–22 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and third authors would like to thank Gonbad Kavous University for supporting this research work. The second author would like to appreciate the research council of Farhangian University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asyieh Ebrahimzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Davoud Mirzaei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahini, M., Ebrahimzadeh, A. & Khanduzi, R. A Spectral Collocation Method for Computer Virus Spread Case of Delayed Optimal Control Problem. Bull. Iran. Math. Soc. 48, 507–535 (2022). https://doi.org/10.1007/s41980-021-00530-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-021-00530-w

Keywords

Mathematics Subject Classification

Navigation