Skip to main content

Advertisement

Log in

Pilot-scale biomass gasification system for hydrogen production from palm kernel shell (part A): steady-state simulation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Hydrogen (H2) production via biomass gasification has demonstrated to be a viable method to obtain environmental-friendly fuel. In this paper, steady-state modeling of palm kernel shell (PKS) steam gasification pilot-plant is developed and validated using experimental data. The process optimization study for the gasification of PKS utilizing the coal bottom ash as a catalyst is conducted in the continuous advanced fluidized bed technology pilot-scale gasification plant to determine the optimum conditions to produce maximum H2 and syngas composition. The optimum conditions for maximum H2 and syngas composition are a temperature of 625 °C, PKS particle size of 1–2 mm, and coal bottom ash to PKS percentage of 7.5 %. The optimum operating condition results are then validated in the pilot-scale gasification system. Steady-state simulation of the pilot scale biomass gasification plant is then developed using Aspen Plus® and validated using the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

HHV:

higher heating value, MJ/kg

LHV:

lower heating value, MJ/kg

T:

temperature, °C

CO2 :

carbon dioxide

CO:

carbon mono oxide

CH4 :

methane

H2 :

hydrogen

SBR:

steam to biomass ratio

PKS:

palm kernel shell

CGE:

cold gas efficiency

References

  1. Wahab AG (2015) Malaysia Oilseeds and Products Annual. GAIN Report Number: MY4006. USDA Foreign Agricultural Service. Kuala Lumpur, Malaysia, 2014

  2. Khan Z, Yusup S, Ahmad MM, Rashidi NA (2014) Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. Int J Hydrog Energy 39(7):3286–3293

    Article  Google Scholar 

  3. Kong M, Fei J, Wang S, Lu W, Zheng X (2011) Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification. Bioresour Technol 102(2):2004–2008

    Article  Google Scholar 

  4. Marcantonio V, De Falco M, Capocelli M, Bocci E, Colantoni A, Villarini M (2019) Process analysis of hydrogen production from biomass gasification in fluidized bed reactor with different separation systems. Int J Hydrog Energy 44(21):10350–10360

    Article  Google Scholar 

  5. Singh VCJ, Sekhar SJ (2016) Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock. Appl Therm Eng 97:22–27

    Article  Google Scholar 

  6. Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581

    Article  Google Scholar 

  7. Taba LE, Irfan MF, Daud WAMW, Chakrabarti MH (2012) The effect of temperature on various parameters in coal, biomass and CO-gasification: a review. Renew Sust Energ Rev 16(8):5584–5596

    Article  Google Scholar 

  8. Jangsawang W, Laohalidanond K, Kerdsuwan S (2015) Optimum equivalence ratio of biomass gasification process based on thermodynamic equilibrium model. Energy Procedia 79:520–527

    Article  Google Scholar 

  9. Ruiz JA, Juárez M, Morales M, Muñoz P, Mendívil M (2013) Biomass gasification for electricity generation: review of current technology barriers. Renew Sust Energ Rev 18:174–183

    Article  Google Scholar 

  10. Hussain M, Tufa LD, Yusup S, Zabiri H (2018) A kinetic-based simulation model of palm kernel shell steam gasification in a circulating fluidized bed using Aspen Plus®: a case study. Biofuels 9(5):635–646

    Article  Google Scholar 

  11. Adeyemi I, Janajreh I (2015) Modeling of the entrained flow gasification: kinetics-based ASPEN Plus model. Renew Energy 82:77–84

    Article  Google Scholar 

  12. Doherty W, Reynolds A, Kennedy D (2009) The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenergy 33(9):1158–1167

    Article  Google Scholar 

  13. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14(9):2841–2851

    Article  Google Scholar 

  14. Ramzan N, Ashraf A, Naveed S, Malik A (2011) Simulation of hybrid biomass gasification using Aspen Plus: a comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy 35(9):3962–3969

    Article  Google Scholar 

  15. Mohammadidoust A, Omidvar MR (2020) Simulation and modeling of hydrogen production and power from wheat straw biomass at supercritical condition through Aspen Plus and ANN approaches. Biomass Convers Biorefinery:1–17. https://doi.org/10.1007/s13399-020-00933-5

  16. Marcantonio V, Monforti Ferrario A, Di Carlo A, Del Zotto L, Monarca D, Bocci E (2020) Biomass steam gasification: a comparison of syngas composition between a 1-D MATLAB Kinetic Model and a 0-D Aspen Plus Quasi-Equilibrium Model. Computation 8(4):86. https://doi.org/10.3390/computation8040086

  17. Front Matter A2- Basu P (2010) Biomass gasification and pyrolysis: practical design and theory: Academic Press, USA

  18. Baruah D, Baruah D (2014) Modeling of biomass gasification: a review. Renew Sust Energ Rev 39:806–815

    Article  Google Scholar 

  19. Paviet F, Chazarenc F, Tazerout M (2009) Thermo chemical equilibrium modelling of a biomass gasifying process using ASPEN PLUS. International Journal of chemical reactor engineering 7(1):40

    Article  Google Scholar 

  20. Doherty W, Reynolds A, Kennedy D (2013) Aspen plus simulation of biomass gasification in a steam blown dual fluidised bed. Book Chapter: Materials and processes for energy: communicating current research and technological developments, A. Méndez-Vilas (ed) Formatex Research Centre

  21. Begum S, Rasul MG, Akbar D, Ramzan N (2013) Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies 6(12):6508–6524

    Article  Google Scholar 

  22. Sreejith C, Muraleedharan C, Arun P (2014) Performance prediction of steam gasification of wood using an ASPEN PLUS thermodynamic equilibrium model. Int J Sustain Energy 33(2):416–434

    Article  Google Scholar 

  23. Nikoo MB, Mahinpey N (2008) Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 32(12):1245–1254

    Article  Google Scholar 

  24. Im-orb K, Simasatitkul L, Arpornwichanop A (2016) Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation. Energy 94:483–496

    Article  Google Scholar 

  25. Čeković I, Manić N, Stojiljković D, Trninić M, Todorović D, Jovović A (2019) Modelling of wood chips gasification process in ASPEN Plus with multiple validation approach. Chem Ind Chem Eng Q 25(3):217–228

    Article  Google Scholar 

  26. de Andrés JM, Vedrenne M, Brambilla M, Rodríguez E (2019) Modeling and model performance evaluation of sewage sludge gasification in fluidized-bed gasifiers using Aspen Plus. J Air Waste Manage Assoc 69(1):23–33. https://doi.org/10.1080/10962247.2018.1500404

    Article  Google Scholar 

  27. Acar MC, Böke YE (2019) Simulation of biomass gasification in a BFBG using chemical equilibrium model and restricted chemical equilibrium method. Biomass Bioenergy 125:131–138

    Article  Google Scholar 

  28. Im-orb K, Simasatitkul L, Arpornwichanop A (2016) Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel 164:361–373

    Article  Google Scholar 

  29. Patra TK, Sheth PN (2015) Biomass gasification models for downdraft gasifier: a state-of-the-art review. Renew Sust Energ Rev 50:583–593

    Article  Google Scholar 

  30. Beheshti S, Ghassemi H, Shahsavan-Markadeh R (2015) Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Convers Manag 94:345–352

    Article  Google Scholar 

  31. Villarini M, Marcantonio V, Colantoni A, Bocci E (2019) ensitivity analysis of different parameters on the performance of a CHP internal combustion engine system fed by a biomass waste gasifier. Energies 12(4):688

    Article  Google Scholar 

  32. (2009) Aspen Technology Aspen Plus Dynamic. vol. http://www.aspentech.com/brochures/1716_15_Aspen_Plus_Dynamics_web.pdf, Inc. Accessed April, 2014

  33. Rahbari A, Venkataraman MB, Pye J (2018) Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass. Appl Energy 228:1669–1682

    Article  Google Scholar 

  34. Khan Z, Yusup S, Kamble P, Naqvi M, Watson I (2018) Assessment of energy flows and energy efficiencies in integrated catalytic adsorption steam gasification for hydrogen production. Appl Energy 225:346–355

    Article  Google Scholar 

  35. Omidvar MR, Meghdadi Isfahani AH (2018) Simulation and modeling of hydrogen production from glucose biomass model compound via hydro-thermal gasification. Energy Equip Syst 6(2):211–219

    Google Scholar 

  36. Yucel O, Aydin ES, Sadikoglu H (2019) Comparison of the different artificial neural networks in prediction of biomass gasification products. Int J Energy Res 43(11):5992–6003

    Article  Google Scholar 

  37. Elmaz F, Yücel Ö, Mutlu AY (2020) Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 191:116541

    Article  Google Scholar 

  38. Elmaz F, Yücel Ö, Mutlu AY (2019) Evaluating the effect of blending ratio on the co-gasification of high ash coal and biomass in a fluidized bed gasifier using machine learning. Mugla J Sci Technol 5(1):1–12

    Article  Google Scholar 

  39. Yahaya AZ, Somalu MR, Muchtar A, Sulaiman SA, Daud WRW (2019) Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy 175:931–940. https://doi.org/10.1016/j.energy.2019.03.138

    Article  Google Scholar 

  40. Shahbaz M, Yusup S, Inayat A, Patrick DO, Ammar M, Pratama A (2017) Cleaner production of hydrogen and syngas from catalytic steam palm kernel shell gasification using CaO sorbent and coal bottom ash as a catalyst. Energy Fuel 31(12):13824–13833

    Article  Google Scholar 

  41. Lamminen M, Wood J, Walker H, Chin Y-P, He Y, Traina SJ (2001) Effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine. J Environ Qual 30(4):1371–1381

    Article  Google Scholar 

  42. Gao N, Li A, Quan C, Gao F (2008) Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int J Hydrog Energy 33(20):5430–5438

    Article  Google Scholar 

  43. Inayat A, Ahmad MM, Mutalib MA, Yusup S (2012) Process modeling for parametric study on oil palm empty fruit bunch steam gasification for hydrogen production. Fuel Process Technol 93(1):26–34

    Article  Google Scholar 

  44. Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol 100(3):1419–1427

    Article  Google Scholar 

  45. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1):55–63

    Article  Google Scholar 

  46. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363

    Article  Google Scholar 

  47. Abubakar AU, Baharudin KS (2012) Potential use of Malaysian thermal power plants coal bottom ash in construction. Int J Sustain Constr Eng Technol 3(2):25–37

    Google Scholar 

  48. Acharya B, Dutta A, Basu P (2010) An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int J Hydrog Energy 35(4):1582–1589

    Article  Google Scholar 

  49. Boerrigter H, Rauch R (2006) Review of applications of gases from biomass gasification. Netherlands

  50. Fowler P, Krajačić G, Lončar D, Duić N (2009) Modeling the energy potential of biomass–H2RES. Int J Hydrog Energy 34(16):7027–7040

    Article  Google Scholar 

  51. Wilson ED, Clairon Q, Henderson R, Taylor CJ (2018) Dealing with observational data in control. Annu Rev Control 46:94–106

    Article  MathSciNet  Google Scholar 

  52. Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee WJ, Wu H, Li CZ (2008) Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind Eng Chem Res 47(6):1846–1854

    Article  Google Scholar 

  53. Rupesh S, Muraleedharan C, Arun P (2016) gasification of biomass with sorbent enabled CO2 capture. Resourc Efficient Technol 2(2):94–103

    Article  Google Scholar 

  54. Xu G, Murakami T, Suda T, Kusama S, Fujimori T (2005) Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures. Ind Eng Chem Res 44(15):5864–5868

    Article  Google Scholar 

  55. Khan Z, Yusup S, Ahmad MM, Chin BLF (2014) Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification. Energy Convers Manag 87:1224–1230

    Article  Google Scholar 

  56. Suwatthikul A, Limprachaya S, Kittisupakorn P, Mujtaba IM (2017) Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition. Energies 10(3):314

    Article  Google Scholar 

  57. Robinson PJ, Luyben WL (2008) Simple dynamic gasifier model that runs in Aspen Dynamics. Ind Eng Chem Res 47(20):7784–7792

    Article  Google Scholar 

  58. Shen L, Gao Y, Xiao J (2008) Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy 32(2):120–127

    Article  Google Scholar 

  59. Inayat A, Ahmad MM, Mutalib MA, Yusup S (2010) Effect of process parameters on hydrogen production and efficiency in biomass gasification using modelling approach. J Appl Sci (Faisalabad) 10(24):3183–3190

    Article  Google Scholar 

  60. Moghadam RA, Yusup S, Azlina W, Nehzati S, Tavasoli A (2014) Investigation on syngas production via biomass conversion through the integration of pyrolysis and air–steam gasification processes. Energy Convers Manag 87:670–675

    Article  Google Scholar 

  61. Hussain M, Tuf LD, Yusup S, Zabiri H (2019) Characterization of coal bottom ash &its potential to be used as catalyst in biomass gasification. Mater Today Proc 16:1886–1893

    Article  Google Scholar 

  62. Lv P, Xiong Z, Chang J, Wu C, Chen Y, Zhu J (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95(1):95–101

    Article  Google Scholar 

  63. Shahbaz M, Inayat A, Patrick DO, Ammar M (2017) The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: a review. Renew Sust Energ Rev 73:468–476

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial grant by the Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zabiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Zabiri, H., Uddin, F. et al. Pilot-scale biomass gasification system for hydrogen production from palm kernel shell (part A): steady-state simulation. Biomass Conv. Bioref. 13, 3849–3862 (2023). https://doi.org/10.1007/s13399-021-01474-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01474-1

Keywords

Navigation