Skip to main content
Log in

Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cotton stalk is the most widely generated agricultural residue with lower economic importance, and can be employed as a feedstock in lignocellulosic biorefinery for the manufacture of bioethanol and other value-added bioproducts. Cotton stalk possesses high holocellulose content, which can be saccharified to various fermentable sugars for bioethanol production. However, the occurrence of high amount of lignin in cotton stalk renders it an inferior substrate for bioethanol production. Selection of suitable pretreatment process can improve digestibility of cotton stalk and hence higher sugar concentration on subsequent enzymatic saccharification. Furthermore, fermentation of hexose and pentoses sugars to ethanol requires robust microbial strains and efficient fermentation methods. Therefore, the major hindrance in commercializing lignocellulosic ethanol from cotton stalk is to develop an effective combination of pretreatment, saccharification, and fermentation methods thereby making the whole bioconversion process economically viable. This review paper discusses various previously investigated pretreatment, acid and/or enzymatic saccharification, and fermentation methods for cotton stalk-to-lignocellulosic ethanol production. Finally, it also discusses the major barriers in bioethanol fermentation strategies, and as well future perspectives to overcome these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dutra ED, Santos FA, Alencar BR, Reis AL, de Souza RD, da Silva Aquino KA, Morais MA Jr, Menezes RS (2018) Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conv Bioref 8:225–234. https://doi.org/10.1007/s13399-017-0277-3

    Article  Google Scholar 

  2. Keshav PK, Naseeruddin S, Rao LV (2016a) Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresour Technol 214:363–370. https://doi.org/10.1016/j.biortech.2016.04.108

    Article  Google Scholar 

  3. Su T, Zhao D, Khodadadi M, Len C (2020) Lignocellulosic biomass for bioethanol: recent advances, technology trends and barriers to industrial development. Curr Opin Green Sustain Chem 24:56–60

    Article  Google Scholar 

  4. Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4(2):157–191. https://doi.org/10.1007/s13399-013-0097-z

    Article  Google Scholar 

  5. Spyridon A, Willem Euverink GJ (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 19:44–53. https://doi.org/10.1016/j.ejbt.2016.07.006

    Article  Google Scholar 

  6. Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Conv Bioref 8(3):607–619

    Article  Google Scholar 

  7. Du SK, Su X, Yang W, Wang Y, Kuang M, Ma L, Fand D, Zhou D (2016) Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydr Polym 140:279–286. https://doi.org/10.1016/j.carbpol.2015.12.056

    Article  Google Scholar 

  8. Jeong SY, Lee JW (2016) Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology. Ind Crop Prod 79:1–6. https://doi.org/10.1016/j.indcrop.2015.10.036

    Article  Google Scholar 

  9. Meneses DB, Montes de Oca-Vásquez G, Vega-Baudrit JR, Rojas-Álvarez M, Corrales-Castillo J, Murillo-Araya LC (2020) Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Conv Bioref 22:1–8. https://doi.org/10.1007/s13399-020-00722-0

    Article  Google Scholar 

  10. Keshav PK, Shaik N, Koti S, Linga VR (2016b) Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind Crop Prod 91:323–331. https://doi.org/10.1016/j.indcrop.2016.07.031

    Article  Google Scholar 

  11. Koizumi T (2015) Biofuels and food security. Renew Sustain Energy Rev 52:829–841. https://doi.org/10.1016/j.rser.2015.06.041

    Article  Google Scholar 

  12. Duque A, Álvarez C, Doménech P, Manzanares P, Moreno AD (2021) Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes 9(2):206

    Article  Google Scholar 

  13. Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002

    Article  Google Scholar 

  14. Jahnavi G, Prashanthi GS, Sravanthi K, Rao LV (2017) Status of availability of lignocellulosic feed stocks in India: biotechnological strategies involved in the production of Bioethanol. Renew Sustain Energy Rev 73:798–820. https://doi.org/10.1016/j.rser.2017.02.018

    Article  Google Scholar 

  15. Ethanol Industry Outlook (2019) Renewable fuels association. https://ethanolrfa.org/wp-content/uploads/2019/02/RFA2019Outlook.pdf. Accessed 15 Mar 2020

  16. Guo JM, Wang YT, Cheng JR, Zhu MJ (2020) Enhancing enzymatic hydrolysis and fermentation efficiency of rice straw by pretreatment of sodium perborate. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00668-3

  17. International Energy Agency (2018) World energy outlook fact sheet: Global energy trends. OECD/IEA, Paris. http://www.worldenergyoutlook.org/docs/weo2008/fact_sheets_08.pdf. Accessed 15 Mar 2020

  18. Das S (2020) The National Policy of biofuels of India–A perspective. Energy Policy 143:111595. https://doi.org/10.1016/j.enpol.2020.111595

    Article  Google Scholar 

  19. National Policy on Biofuels (2018) Ministry of petroleum and natural gas. The gazette of India: Extraordinary [PART I−SEC.1].http://petroleum.nic.in/sites/default/files/biofuelpolicy2018_1.pdf. Accessed 20 Nov 2020

  20. Banoth C, Sunkar B, Tondamanati PR, Bhukya B (2017) Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 7:334. https://doi.org/10.1007/s13205-017-0980-6

    Article  Google Scholar 

  21. Zhao C, Zou Z, Li J, Jia H, Liesche J, Chen S, Fang H (2018) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy 118:14–24. https://doi.org/10.1016/j.renene.2017.11.001

    Article  Google Scholar 

  22. Govumoni SP, Koti S, Kothagouni SY, Venkateshwar S, Linga VR (2013) Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. CarbohydrPolym 91:646–650. https://doi.org/10.1016/j.carbpol.2012.08.019

    Article  Google Scholar 

  23. Canilha L, Kumar Chandel A, dos Santos Milessi TS, Fernandes Antunes FA, da Costa Freitas WL, das Gracas Almeida Felipe M, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15. https://doi.org/10.1155/2012/989572

    Article  Google Scholar 

  24. Prasad S, Singh A, Korres NE, Rathore D, Sevda S, Pant D (2020) Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour Technol 303:122964. https://doi.org/10.1016/j.biortech.2020.122964

    Article  Google Scholar 

  25. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  26. Al Afif R, Pfeifer C, Pröll T (2019) Bioenergy recovery from cotton stalk. Adv Cotton Res IntechOpen. https://doi.org/10.5772/intechopen.88005

  27. Jiang W, Chang S, Li H, Oleskowicz T, Louloudi A, Kalogiannis KG, Lappas AA, Papayannakos N, Kekos D, Mamma D (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5:5. https://doi.org/10.3390/fermentation5010005

    Article  Google Scholar 

  28. Binod P, Kuttiraja M, Archana M, Janu KU, Sindhu R, Sukumaran RK, Pandey A (2012) High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92:340–345. https://doi.org/10.1016/j.fuel.2011.07.044

    Article  Google Scholar 

  29. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  30. Li Y, Zhuo J, Liu P, Chen P, Hu H, Wang Y, Wang Y (2018) Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr Polym 192:273–281. https://doi.org/10.1016/j.carbpol.2018.03.013

    Article  Google Scholar 

  31. Akpinar O, Levent O, Bostanci S, Bakir U, Yilmaz L (2011) The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Appl Biochem Biotechnol 163:313–325. https://doi.org/10.1007/s12010-010-9040-y

    Article  Google Scholar 

  32. Wang Y, Gong X, Hu X, Zhou N (2019) Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release. Bioresour Technol 276:343–348. https://doi.org/10.1016/j.biortech.2019.01.008

    Article  Google Scholar 

  33. Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C (2018) Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis, cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metab Eng 45:200–210. https://doi.org/10.1016/j.ymben.2017.12.001

    Article  Google Scholar 

  34. Becker J, Wittmann C (2019) A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 37:107360. https://doi.org/10.1016/j.biotechadv.2019.02.016

    Article  Google Scholar 

  35. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneiderc R, Pleissnerc D, Rinkelb J, Dickschat JS, Venusc J, van Duuren J, Wittmann C (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293. https://doi.org/10.1016/j.ymben.2018.03.003

    Article  Google Scholar 

  36. Meléndez-Hernández PA, Hernández-Beltrán JU, Hernández-Guzmán A, Morales-Rodríguez R, Torres-Guzmán JC, Hernández-Escoto H (2019) Comparative of alkaline hydrogen peroxide pretreatment using NaOH and Ca (OH)2 and their effects on enzymatic hydrolysis and fermentation steps. Biomass Conv Bioref 2:23–132. https://doi.org/10.1007/s13399-012-0040-8

    Article  Google Scholar 

  37. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. https://doi.org/10.1016/j.jece.2013.10.013

    Article  Google Scholar 

  38. Sun D, Yang Q, Wang Y, Gao H, He M, Lin X, Lu J, Wang Y, Kang H, Alam A, Tu Y, Xia T, Tu Y (2020) Distinct mechanisms of enzymatic saccharification and bioethanol conversion enhancement by three surfactants under steam explosion and mild chemical pretreatments in bioenergy Miscanthus. Ind Crop Prod 153:112559. https://doi.org/10.1016/j.indcrop.2020.112559

    Article  Google Scholar 

  39. Ebrahimi M, Caparanga AR, Ordono EE, Villaflores OB, Pouriman M (2017) Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Ind Crop Prod 101:84–91. https://doi.org/10.1016/j.indcrop.2017.03.006

    Article  Google Scholar 

  40. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energy Rev 80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  41. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  Google Scholar 

  42. Revin V, Atykyan N, Zakharkin D (2016) Enzymatic hydrolysis and fermentation of ultra-dispersed wood particles after ultrasonic pretreatment. Electron J Biotechnol 19:14–19. https://doi.org/10.1016/j.ejbt.2015.11.007

    Article  Google Scholar 

  43. Bhardwaj N, Kumar B, Verma P (2020) Microwave-assisted pretreatment using alkali metal salt in combination with orthophosphoric acid for generation of enhanced sugar and bioethanol. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00640-1

  44. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  45. Galbe M, Zacchi G (2012) Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  Google Scholar 

  46. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  47. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  Google Scholar 

  48. Carvalho DM, de Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crop Prod 94:932–941. https://doi.org/10.1016/j.indcrop.2016.09.069

    Article  Google Scholar 

  49. Wang W, Wang X, Zhang Y, Yu Q, Tan X, Zhuang X, Yuan Z (2020) Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Ind Crop Prod 145:112145. https://doi.org/10.1016/j.indcrop.2020.112145

    Article  Google Scholar 

  50. Kaur U, Oberoi HS, Bhargav VK, Sharma-Shivappa R, Dhaliwal SS (2012) Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. Ind Crop Prod 37:219–226. https://doi.org/10.1016/j.indcrop.2011.12.007

    Article  Google Scholar 

  51. Chen L, Li J, Lu M, Guo X, Zhang H, Han L (2016) Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydr Polym 141:1–9. https://doi.org/10.1016/j.carbpol.2015.12.079

    Article  Google Scholar 

  52. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  Google Scholar 

  53. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16. https://doi.org/10.1186/1754-6834-6-16

    Article  Google Scholar 

  54. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  55. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022

    Article  Google Scholar 

  56. Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 99:2–12. https://doi.org/10.1016/j.biortech.2015.08.143

    Article  Google Scholar 

  57. Aid T, Hyvärinen S, Vaher M, Koel M, Mikkola JP (2016) Saccharification of lignocellulosic biomasses via ionic liquid pretreatment. Ind Crop Prod 92:336–341. https://doi.org/10.1016/j.indcrop.2016.08.017

    Article  Google Scholar 

  58. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  59. Sharma V, Nargotra P, Sharma S, Bajaj BK (2020) Efficient bioconversion of sugarcane tops biomass into biofuel-ethanol using an optimized alkali-ionic liquid pretreatment approach. Biomass Conv Bioref 11:1–4. https://doi.org/10.1007/s13399-020-01123-z

    Article  Google Scholar 

  60. Haykir NI, Bakir U (2013) Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Ind Crop Prod 51:408–414. https://doi.org/10.1016/j.indcrop.2013.10.017

    Article  Google Scholar 

  61. Haykir NI, Bahcegul E, Bicak N, Bakir U (2013) Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind Crop Prod 41:430–436. https://doi.org/10.1016/j.indcrop.2012.04.041

    Article  Google Scholar 

  62. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydr Polym 117:624–631. https://doi.org/10.1016/j.carbpol.2014.10.012

    Article  Google Scholar 

  63. Chadni M, Grimi N, Bals O, Ziegler-Devin I, Brosse N (2019) Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Ind Crop Prod 141:111757. https://doi.org/10.1016/j.indcrop.2019.111757

    Article  Google Scholar 

  64. Fan X, Cheng G, Zhang H, Li M, Wang S, Yuan Q (2014) Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohydr Polym 114:21–26. https://doi.org/10.1016/j.carbpol.2014.07.051

    Article  Google Scholar 

  65. Huang Y, Wei X, Zhou S, Liu M, Tu Y, Li A, Chen P, Wang Y, Zhang X, Tai H, Peng L, Xia T (2015) Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresour Technol 181:224–230. https://doi.org/10.1016/j.biortech.2015.01.020

    Article  Google Scholar 

  66. Yu Q, Zhuang X, Lv S, He M, Zhang Y, Yuan Z, Qi W, Wang Q, Wang W, Tan X (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598. https://doi.org/10.1016/j.biortech.2012.11.099

    Article  Google Scholar 

  67. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. https://doi.org/10.1016/j.biortech.2015.08.051

    Article  Google Scholar 

  68. Arenas-Cárdenas P, López-López A, Moeller-Chávez GE, León-Becerril E (2016) Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valor 8:161–181. https://doi.org/10.1007/s12649-016-9559-4

    Article  Google Scholar 

  69. Hu M, Yu H, Li Y, Li A, Cai Q, Liu P, Peng L (2018) Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydr Polym 202:434–443. https://doi.org/10.1016/j.carbpol.2018.08.039

    Article  Google Scholar 

  70. Jiang W, Chang S, Li H, Oleskowicz-Popiel P, Xu J (2015) Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresour Technol 176:175–180. https://doi.org/10.1016/j.biortech.2014.11.023

    Article  Google Scholar 

  71. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  Google Scholar 

  72. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269. https://doi.org/10.1016/j.carbpol.2013.08.045

    Article  Google Scholar 

  73. García-Torreiro M, López-Abelairas M, Lu-Chau TA, Lema JM (2016) Fungal pretreatment of agricultural residues for bioethanol production. Ind Crop Prod 89:486–492. https://doi.org/10.1016/j.indcrop.2016.05.036

    Article  Google Scholar 

  74. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valor 10(2):235–251

    Article  Google Scholar 

  75. Vats S, Maurya DP, Shaimoon M, Agarwal A, Negi S (2013) Development of a microbial consortium for the production of blend enzymes for the hydrolysis of agricultural waste into sugars. J Sci Ind Res 72:585–590. http://nopr.niscair.res.in/handle/123456789/20953. Accessed 20 Nov 2020

  76. Yuan X, Ma L, Wen B, Zhou D, Kuang M, Yang W, Cui Z (2016) Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour Technol 207:293–301

    Article  Google Scholar 

  77. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96. https://doi.org/10.1016/j.biombioe.2008.04.01683

    Article  Google Scholar 

  78. Shi J, Sharma-Shivappa RR, Chinn MS (2012) Interactions between fungal growth, substrate utilization and enzyme production during shallow stationary cultivation of Phanerochaete chrysosporium on cotton stalks. Enzym Microb Technol 51:1–8. https://doi.org/10.1016/j.biombioe.2008.04.016

    Article  Google Scholar 

  79. Meehnian H, Jana AK (2017) Cotton stalk pretreatment using Daedalea flavida, Phlebia radiata, and Flavodon flavus: lignin degradation, cellulose recovery, and enzymatic saccharification. Appl Biochem Biotechnol 181(4):1465–1484

    Article  Google Scholar 

  80. Taherzadeh MJ, Karimi K (2007a) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:472–499

    Google Scholar 

  81. Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199. https://doi.org/10.1016/j.carbpol.2009.07.049

    Article  Google Scholar 

  82. Kristiani A, Abimanyu H, Setiawan AH, Sudiyarmanto Aulia F (2013) Effect of pretreatment process by using diluted acid to characteristic of oil palm's frond. Energy Procedia 32:183–189. https://doi.org/10.1016/j.egypro.2013.05.024

    Article  Google Scholar 

  83. Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  Google Scholar 

  84. Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174:43–62. https://doi.org/10.1007/s12010-014-1015-y

    Article  Google Scholar 

  85. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40. https://doi.org/10.1002/bbb.49

    Article  Google Scholar 

  86. Naseeruddin S, Desai S, Venkateswar Rao L (2016) Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose. Bioresour Technol 202:231–237. https://doi.org/10.1016/j.biortech.2015.12.025

    Article  Google Scholar 

  87. Zhuang J, Liu Y, Wu Z, Sun Y, Lin L (2009) Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. BioResources 4:674–686

    Google Scholar 

  88. Chandel AK, Silva SS, Singh OV (2012) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnergy Res 6:388–401. https://doi.org/10.1007/s12155-012-9241-z

    Article  Google Scholar 

  89. Landaeta R, Acevedo F, Aroca G (2019) Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 42:1–5. https://doi.org/10.1016/j.ejbt.2019.08.001

    Article  Google Scholar 

  90. Taherzadeh MJ, Karimi K (2007b) Enzymatic-based hydrolysis processes for Ethanol. BioResources 2:707–738

    Google Scholar 

  91. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    Article  Google Scholar 

  92. Brethauer S, Studer MH (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals— a review. Chimia (Aarau) 69:572-581. https://doi.org/10.1016/j.carbpol.2020.117164

  93. Gomes A, Moysés DN, Santa Anna LMM, de Castro AM (2018) Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: effects of solid loading and surfactant addition. Ind Crop Prod 119:283–289. https://doi.org/10.1016/j.indcrop.2018.04.026

    Article  Google Scholar 

  94. Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conv Bioref 2(2):123–132. https://doi.org/10.1007/s13399-012-0040-8

    Article  Google Scholar 

  95. Mota TR, Oliveira DM, Morais GR, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2019) Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind Crop Prod 140:111657. https://doi.org/10.1016/j.indcrop.2019.111657

    Article  Google Scholar 

  96. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  97. Chilari D, Dimos K, Georgoula G, Paschos T, Mamma D, Louloudi A, Papayannakos N, Kekos D (2017) Bioethanol production from alkali-treated cotton stalks at high solids loading applying non-isothermal simultaneous saccharification and fermentation. Waste Biomass Valor 8:1919–1929. https://doi.org/10.1007/s12649-016-9818-4

    Article  Google Scholar 

  98. Christopher M, Mathew AK, Kiran Kumar M, Pandey A, Sukumaran RK (2017) A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresour Technol 242:178–183. https://doi.org/10.1016/j.biortech.2017.03.190

    Article  Google Scholar 

  99. Keshav PK, Banoth C, Anthappagudem A, Linga VR, Bhukya B (2018) Sequential acid and enzymatic saccharification of steam exploded cotton stalk and subsequent ethanol production using Scheffersomyces stipitis NCIM 3498. Ind Cro Prods 125:462–467. https://doi.org/10.1016/j.indcrop.2018.08.060

    Article  Google Scholar 

  100. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93. https://doi.org/10.1002/bbb.188

    Article  Google Scholar 

  101. Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechol 38:581–597. https://doi.org/10.1007/s10295-010-0894-3

    Article  Google Scholar 

  102. Kleingesinds EK, José ÁH, Brumano LP, Silva-Fernandes T, Rodrigues D Jr, Rodrigues RC (2018) Intensification of bioethanol production by using Tween 80 to enhance dilute acid pretreatment and enzymatic saccharification of corncob. Ind Crop Prod 124:166–176. https://doi.org/10.1016/j.indcrop.2018.07.037

    Article  Google Scholar 

  103. Ko JK, Lee SM (2018) Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotechnol 50:72–80. https://doi.org/10.1016/j.copbio.2017.11.007

    Article  Google Scholar 

  104. Rehman O, Shahid A, Liu CG, Xu JR, Javed MR, Eid NH, Gull M, Nawaz M, Mehmood MA (2019) Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae. Biomass Conv Bioref 10:1269–1278. https://doi.org/10.1007/s13399-019-00529-8

    Article  Google Scholar 

  105. Akinosho H, Rydzak T, Borole A, Ragauskas A, Close D (2015) Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicol 24:2156–2174. https://doi.org/10.1007/s10646-015-1543-4

    Article  Google Scholar 

  106. Lynd LR, Guss AM, Himmel ME, Beri D, Herring C, Holwerda EK, Shao X (2016) Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacter saccharolyticum. Ind Biotechnol Microorganisms, First Edition 10:365–394. https://doi.org/10.1002/9783527807796.ch10

    Article  Google Scholar 

  107. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92. https://doi.org/10.1016/j.ejbt.2016.02.007

    Article  Google Scholar 

  108. Fernandes-Klajn F, Romero-García JM, Díaz MJ, Castro E (2018) Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind Crop Prod 122:98–106. https://doi.org/10.1016/j.indcrop.2018.05.063

    Article  Google Scholar 

  109. Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39. https://doi.org/10.1016/j.copbio.2016.02.031

    Article  Google Scholar 

  110. Sophanodorn K, Unpaprom Y, Whangchai K, Duangsuphasin A, Manmai N, Ramaraj R (2020) A biorefinery approach for the production of bioethanol from alkaline-pretreated, enzymatically hydrolyzed Nicotiana tabacum stalks as feedstock for the bio-based industry. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01177-z

  111. Malik K, Salama ES, Kim TH, Li X (2020) Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose. Int Biodeterior Biodegradation 147:104869. https://doi.org/10.1016/j.ibiod.2019.104869

    Article  Google Scholar 

  112. Singh A, Bajar S, Bishnoi NR (2017) Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Bioresour Technol 244:71–77. https://doi.org/10.1016/j.biortech.2017.07.123

    Article  Google Scholar 

  113. Uyan M, Alptekin FM, Bastabak B, Ozgul S, Erdogan B, Ogut TC, Sezer U, Celiktas MS (2019) Combined biofuel production from cotton stalk and seed with a biorefinery approach. Biomass Conv Biorefin 12:1–8. https://doi.org/10.1007/s13399-019-00427-z

    Article  Google Scholar 

  114. Zhang C (2019) Lignocellulosic Ethanol: Technology and Economics. In alcohol fuels-current technologies and future prospect. IntechOpen:1–21. https://doi.org/10.5772/intechopen.86701

  115. Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S et al (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):1–24

    Article  Google Scholar 

  116. Sharma S, Arora A (2020) Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. Ann Microbiol 70(1):1–17

    Article  Google Scholar 

  117. Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJ (2015) An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 8(1):1–13

    Article  Google Scholar 

  118. Hou J, Qiu C, Shen Y, Li H, Bao X (2017) Engineering of saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 17(4). https://doi.org/10.1093/femsyr/fox034

  119. Gao M, Ploessl D, Shao Z (2019) Enhancing the co-utilization of biomass-derived mixed sugars by yeasts. Front Microbiol 9:3264

    Article  Google Scholar 

  120. Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY (2019) Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–837. https://doi.org/10.1039/D0CS00155D

    Article  Google Scholar 

  121. Fan Z (2014) Consolidated Bioprocessing for Ethanol Production. Biorefineries Elsevier:141–160. https://doi.org/10.1016/B978-0-444-59498-3.00007-5

  122. Cui J, Olson DG, Lynd LR (2019) Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Metab Eng 51:32–42

    Article  Google Scholar 

  123. Papanek B, Biswas R, Rydzak T, Guss AM (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng 32:49–54

    Article  Google Scholar 

  124. Biswas R, Prabhu S, Lynd LR, Guss AM (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One 9(2):e86389

    Article  Google Scholar 

  125. Dimos K, Paschos T, Louloudi A, Kalogiannis KG, Lappas AA, Papayannakos N, Kekos D, Mamma D (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5:5. https://doi.org/10.3390/fermentation5010005

    Article  Google Scholar 

Download references

Acknowledgements

This review was sponsored by RUSA 2.0 Grant programme, Ministry of Human Resource Development of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhima Bhukya.

Ethics declarations

Competing interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshav, P.K., Banoth, C., Kethavath, S.N. et al. Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Conv. Bioref. 13, 4477–4493 (2023). https://doi.org/10.1007/s13399-021-01468-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01468-z

Keywords

Navigation