Skip to main content
Log in

Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Orange (Citrus aurantium) peel was investigated for producing microporous nano activated carbons (OPAC). One-step chemical activation process by zinc chloride as an activating agent and a carbonization temperatures ranging from 500 to 900 °C was used to produce OPAC having high surface area of type I. The effects of carbonization temperature, impregnation ratio, and impregnation time on the properties of the OPAC were studied. The prepared activated carbons were characterized by FTIR; Brunauer–Emmett–Teller (BET); TGA; TEM, SEM, and EDAX analyses; the point of zero charge; and Boehm titration method. The maximal surface area of OPAC was activated by using the impregnation (orange peel/ZnCl2) ratio of 2:1, 700 °C carbonization temperature, and a 30-min holding time. The BET surface area, the total pore volume, and the micropore volume were 1228.2 m2/g, 0.5516, and 0.5482 cm3/g, respectively. The total pore volume increased with the increase of the activation temperature. The minimum pore diameter was 0.7 nm and the mean pore diameter was 1.797 nm. The results proved that the ZnCl2 chemical activation is a useful technique to prepare high surface area activated carbon from Citrus aurantium peels with nano pore size structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

a M :

Micropore surface area

a T :

Total surface area

BET:

Brunauer–Emmett–Teller

C 0 :

Initial concentration (mg/L)

C e :

Equilibrium concentration (mg/L)

D P :

Mean pore diameter

DTG:

Deferential thermal analysis

EDAX:

Energy dispersive X-ray analysis

FTIR:

Fourier transform infrared

IUPAC:

International Union of Pure and Applied Chemistry

MB:

Methylene blue

MBN:

Methylene blue number

MP:

Micropore analysis

OP:

Orange peel

OPAC:

Activated carbon from orange peel

pHZPC :

Zero point of charge

PRI:

Percentage removal of iodine

PSD:

Pore size distribution

S BET :

Specific surface area (m2/g)

SEM:

Scanning electron microscope

S mi :

Micropore surface area

t :

Time (min)

T :

Absolute temperature

TEM:

Transmission electron microscope

TGA:

Thermogravimetric analysis

V :

Volume of the solution (L)

V mi :

Micropore volume

V T :

Total pore volume (cm3/g)

W :

Mass of dry adsorbent (g)

References

  1. Yahya AY, Al-Qodah Z, Zanariah Ngah CW (2015) Agricultural bio-mass materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  Google Scholar 

  2. Shoaib AGM, El-Sikaily A, El Nemr A, Mohamed AE-DA, Hassan AA (2020) Testing the carbonization condition for high surface area preparation of activated carbon followed type IV from green alga Ulva lactuca. Biomass Convers Biorefinery. In press. https://doi.org/10.1007/s13399-020-00823-w

  3. Shoaib AGM, El-Sikaily A, El Nemr A, Mohamed AE-DA, Hassan AA (2020) Preparation and characterization of highly surface area activated carbons followed type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation. Biomass Convers Biorefinery. In press. https://doi.org/10.1007/s13399-020-00760-8

  4. El Nemr A (2012) Non-Conventional textile waste water treatment. Nova Science Publishers, Inc, Hauppauge. [Hard cover ISBN: 978-1-62100-079-2, e-book ISBN: 978-1-62100-228-4], p 267

    Google Scholar 

  5. Ozdemir I, Şahin M, Orhan R, Erdem M (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125:200–206. https://doi.org/10.1016/j.fuproc.2014.04.002

    Article  Google Scholar 

  6. Fathy SA, Abdel Hamid FF, El Nemr A, El-Maghraby A, Serag E (2018) Novel tyrosinase biosensor based on multiwall carbon nanotube–titanium oxide nanocomposite for catechol determination. Desalin Water Treat 130:98–108. https://doi.org/10.5004/dwt.2018.22847

    Article  Google Scholar 

  7. El Nemr A, Serag E, El-Maghraby A, Fathy SA, Abdel Hamid FF (2019) Manufacturing of pH sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites: an approach for significant drug release. J Macromol Sci A 56(8):781–793. https://doi.org/10.1080/10601325.2019.1607377

    Article  Google Scholar 

  8. Serag E, El Nemr A, Abdel Hamid FF, Fathy SA, El-Maghraby A (2018) A novel three dimensional carbon nanotube-polyethylene glycol - polyvinyl alcohol nanocomposite for Cu(II) removal from water. Egypt J Aquat Biol Fish 22(2):103–118

    Article  Google Scholar 

  9. Serag E, El Nemr A, El-Maghraby A (2017) Synthesis of highly effective novel graphene oxide-polyethylene glycol-polyvinyl alcohol nano composite hydrogel for copper removal. J Water Environ Nanotech 2(4):223–234. https://doi.org/10.22090/jwent.2017.04.001

    Article  Google Scholar 

  10. El Nemr A, Ragab S (2018) Acetylation of cotton-Giza 86 cellulose using MnCl2 as a new catalyst and its application to machine oil removal. Environ Process 5(4):895–905. https://doi.org/10.1007/s40710-018-0330-7

    Article  Google Scholar 

  11. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2020) Microporous nano activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Convers Biorefinery. In press. https://doi.org/10.1007/s13399-020-00995-5

  12. Alghamdi MM, El-Zahhar AA, Idris AM, Sadi TO, Sahlabji T, El Nemr A (2019) Synthesis, characterization and application of a new polymeric-clay-magnetite composite resin for water softening. Sep Purif Technol 224:356–365. https://doi.org/10.1016/j.seppur.2019.05.037

    Article  Google Scholar 

  13. Eldeeb TM, El Nemr A, Khedr MH, El-Dek SI, Imam NG (2020) Novel three-dimensional chitosan-carbon nanotube–PVA nanocomposite hydrogel for removal of Cr6+ from wastewater. Desalin Water Treat 184:163–177. https://doi.org/10.5004/dwt.2020.25366

    Article  Google Scholar 

  14. El Nemr A (2007) Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem Ecol 23(5):409–425

    Article  Google Scholar 

  15. El Nemr A (2009) Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161:132–141

    Article  Google Scholar 

  16. El-Sikaily A, El Nemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714

    Article  Google Scholar 

  17. El Nemr A, El Sadaawy MM, Khaled A, El Sikaily A (2014) Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus: kinetics, equilibrium and thermodynamics. Blue Biotechnol J 3(1):121–142

    Google Scholar 

  18. El Nemr A, El Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  Google Scholar 

  19. Tsai W, Chang C, Lin M, Chien S, Sun H, Hsieh M (2001) Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45:51–58. https://doi.org/10.1016/S0045-6535(01)00016-9

    Article  Google Scholar 

  20. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C (2020) Porous activated carbons derived from waste sugarcane bagasse for CO2 Adsorption. Chem Eng J 381:122736. https://doi.org/10.1016/j.cej.2019.122736

    Article  Google Scholar 

  21. Liu Q-S, Zheng T, Wang P, Guo L (2010) Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind Crop Prod 31:233–238

    Article  Google Scholar 

  22. Negara DNKP, Nindhia TGT, Surata IW, Hidajat F, Sucipta M (2020) Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Mater Today Proc 22:148–155. https://doi.org/10.1016/j.matpr.2019.08.030

    Article  Google Scholar 

  23. Martinez M, Torres M, Guzman C, Maestri D (2010) Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crop Prod 23(1):23–28. https://doi.org/10.1016/j.indcrop.2005.03.001

    Article  Google Scholar 

  24. Al-Ghouti MA, Sweleh AO (2020) Optimizing textile dye removal by activated carbon prepared from olive stones. Environ Technol Innov 16:100488. https://doi.org/10.1016/j.eti.2019.100488

    Article  Google Scholar 

  25. Lua AC, Guo J (2001) Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption. Colloids Surf A Physicochem Eng Asp 179:151–162. https://doi.org/10.1016/S0927-7757(00)00651-8

    Article  Google Scholar 

  26. Adilla Rashidi N, Yusup SA (2017) Review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J 314:277–290. https://doi.org/10.1016/j.cej.2016.11.059

    Article  Google Scholar 

  27. Angin D (2014) Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115:804–811. https://doi.org/10.1016/j.fuel.2013.04.060

    Article  Google Scholar 

  28. Venegas-Gomez A, Gomez-Corzo M, Macías-García A, Carrasco-Amador JP (2020) Charcoal obtained from cherry stones in different carbonization atmospheres. J Environ Chem Eng 8:103561. https://doi.org/10.1016/j.jece.2019.103561

    Article  Google Scholar 

  29. Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40:2381–2386. https://doi.org/10.1016/S0008-6223(02)00118-5

    Article  Google Scholar 

  30. Lima DR, Hosseini-Bandegharaei A, Thue PS, Lima EC, de Albuquerque YRT, dos Reis GS, Umpierres CS, Dias SLP, Tran HN (2019) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf A Physicochem Eng Asp 583:123966. https://doi.org/10.1016/j.colsurfa.2019.123966

    Article  Google Scholar 

  31. Şentorun-Shalaby Ç, Uçak-Astarlıoğlu MG, Artok L, Sarıcı Ç (2006) Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater 88(1-3):126–134. https://doi.org/10.1016/j.micromeso.2005.09.003

    Article  Google Scholar 

  32. Abbas M (2020) Modeling of adsorption isotherms of heavy metals onto Apricot stone activated carbon: two-parameter models and equations allowing determination of thermodynamic parameters. Mater Today Proc in press. https://doi.org/10.1016/j.matpr.2020.05.320

  33. Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59. https://doi.org/10.1016/j.desal.2011.03.013

    Article  Google Scholar 

  34. Sarabandi D, Roudini G, Barahuie F (2019) Activated carbon derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage. J Energy Storage 24:100795. https://doi.org/10.1016/j.est.2019.100795

    Article  Google Scholar 

  35. Saka C (2012) BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020

    Article  Google Scholar 

  36. Zhong Z-Y, Yang Q, Li X-M, Luo K, Liu Y, Zeng G-M (2012) Preparation of peanut hull based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crop Prod 37(1):178–185. https://doi.org/10.1016/j.indcrop.2011.12.015

    Article  Google Scholar 

  37. Wu M, Guo Q, Fu G (2013) Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technol 247:188–196. https://doi.org/10.1016/j.powtec.2013.07.013

    Article  Google Scholar 

  38. Wang S, Nam H, Nam H (2020) Preparation of activated carbon from peanut shell with KOH activation and its application in H2S adsorption: isotherm and kinetic studies. J Environ Chem Eng 8(2):103683. https://doi.org/10.1016/j.jece.2020.103683

    Article  Google Scholar 

  39. Malik R, Ramteke DS, Wate S (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27:1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009

    Article  Google Scholar 

  40. Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M (2019) Groundnut shell -a beneficial bio-waste. Biocatal Agric Biotechnol 20:101206. https://doi.org/10.1016/j.bcab.2019.101206

    Article  Google Scholar 

  41. Arami-Niya A, Daud WMAW, Mjalli FS (2010) Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J Anal Appl Pyrolysis 89(2):197–203. https://doi.org/10.1016/j.jaap.2010.08.006

    Article  Google Scholar 

  42. Kittappa S, Jais FM, Ramalingam M, Ibrahim S (2020) Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. J Environ Chem Eng 8(5):104081. https://doi.org/10.1016/j.jece.2020.104081

    Article  Google Scholar 

  43. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198

    Article  Google Scholar 

  44. Huynh LTN, Pham TN, Nguyen TH, Le VH, Nguyen TT, Nguyen TDK, Tran TN, Ho PAV, Thien Co T, Nguyen TTT, Anh Vo TK, Nguyen TH, Thu Vu T, Luong VM, Uyama H, Pham GV, Hoang T, Tran DL (2020) Coconut shell-derived activated carbon and carbon nanotubes composite: a promising candidate for capacitive deionization electrode. Synth Met 265:116415. https://doi.org/10.1016/j.synthmet.2020.116415

    Article  Google Scholar 

  45. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2-3):1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

    Article  Google Scholar 

  46. Zhang X, Li C, Qu J, Guo Q, Huang K (2019) Cotton stalk activated carbon-supported Co–Ce–B nanoparticles as efficient catalysts for hydrogen generation through hydrolysis of sodium borohydride. Carbon Resourc Convers 2:225–232. https://doi.org/10.1016/j.crcon.2019.11.001

    Article  Google Scholar 

  47. Oliveira LC, Pereira E, Guimaraes IR, Vallone A, Pereira M, Mesquita JP, Sapag K (2009) Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J Hazard Mater 165(1-3):87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064

    Article  Google Scholar 

  48. El Nemr A, El-Sikaily A, Khaled A (2010) Modeling of adsorption isotherms of methylene blue onto rice husk activated carbon. Egypt J Aquat Res 36(3):403–425

    Google Scholar 

  49. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  Google Scholar 

  50. Veerakumar P, Maiyalagan T, Gnana Sundara Raj B, Guruprasad K, Jiang Z, Lin K-C (2020) Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arab J Chem 13:2995–3007. https://doi.org/10.1016/j.arabjc.2018.08.009

    Article  Google Scholar 

  51. Kamran U, Heo Y-J, Lee JW, Park S-J (2019) Chemically modified activated carbon decorated with MnO2 nano composites for improving lithium adsorption and recovery from aqueous media. J Alloys Compd 794:425–434. https://doi.org/10.1016/j.jallcom.2019.04.211

    Article  Google Scholar 

  52. Qezelsefloo E, Khalili S, Jahanshahi M, Peyravi M (2020) Adsorptive removal of CO2 on Nitrogen-doped porous carbon derived from polyaniline: effect of chemical activation. Mater Chem Phys 239:122304. https://doi.org/10.1016/j.matchemphys.2019.122304

    Article  Google Scholar 

  53. Tsamba AJ, Yang W, Blasiak W (2006) Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol 87:523–530

    Article  Google Scholar 

  54. Guo J, Song Y, Ji X, Ji L, Cai L, Wang Y, Song W (2019) Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 12(2):241. https://doi.org/10.3390/ma12020241

    Article  Google Scholar 

  55. El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A (2009) Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. J Hazard Mater 161:102–110. https://doi.org/10.1016/j.jhazmat.2008.03.060

    Article  Google Scholar 

  56. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J Hazard Mater 165:100–110. https://doi.org/10.1016/j.jhazmat.2008.09.122

    Article  Google Scholar 

  57. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination 238:210–232. https://doi.org/10.1016/j.desal.2008.02.014

    Article  Google Scholar 

  58. İzgi MS, Saka C, Baytar O, Saraçoğlu G, Şahin Ö (2018) Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Anal Lett 52:772–789. https://doi.org/10.1080/00032719.2018.1495223

    Article  Google Scholar 

  59. Li Y, Li Y, Zang H, Chen L, Meng Z, Li H, Ci L, Du Q, Wang D, Wang C, Li H, Xia Y (2019) ZnCl2 activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: isotherm, kinetic, and thermodynamic studies. Environ Technol:2013–2023. https://doi.org/10.1080/09593330.2018.1554006

  60. Lam SS, Liew RK, Wong YM, Yek NYP, Ma NL, Lee CL, Chase HA (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/j.jclepro.2017.06.131

    Article  Google Scholar 

  61. Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98(2):296–301. https://doi.org/10.1016/j.biortech.2006.01.007

    Article  Google Scholar 

  62. Sugumaran P, Susan V, Ravichandran P, Seshadri S (2012) Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J Sustain Energy Environ 3:125–132

    Google Scholar 

  63. Rengaraj S, Moon S-H, Sivabalan R, Arabindoo B, Murugesan V (2002) Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manag 22(5):543–548. https://doi.org/10.1016/S0956-053X(01)00016-2

    Article  Google Scholar 

  64. Rostamian R, Heidarpour M, Mousavi FS, Afyuni M (2015) Characterization and soduim sorption capacity of biochars and activated carbon prepared from rice husk. J Agric Sci Technol 17:1057–1069

    Google Scholar 

  65. Cheung WH, Lau SSY, Leung SY, Ip AWM, Mckay G (2012) Characteristics of chemical modified activated carbons from bamboo scaffolding. Chin J Chem Eng 20:515–5230. https://doi.org/10.1016/S1004-9541(11)60213-9

    Article  Google Scholar 

  66. Kragović M, Stojmenović M, Petrović J, Loredo J, Pašalić S, Nedeljković A, Ristović I (2019) Influence of alginate encapsulation on point of zero charge (pHpzc) and thermodynamic properties of the natural and Fe(III) - modified zeolite. Procedia Manuf 32:286–293. https://doi.org/10.1016/j.promfg.2019.02.216

    Article  Google Scholar 

  67. El Nemr A, Eleryan A, Mashaly M, Khaled A (2020) Comparative study of synthesis of cellulose propionate from different sources using NIS as a new catalyst. Polym Bull. In press. https://doi.org/10.1007/s00289-020-03313-1

  68. El Nemr A, Eleryan A, Mashaly M, Khaled A (2020) Rapid synthesis of cellulose propionate and its conversion to cellulose nitrate propionate. Polym Bull. In press. https://doi.org/10.1007/s00289-020-03317-x

  69. El Nemr A, Ragab S, El Sikaily A (2017) Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution. Iran Polym J 26(4):261–272. https://doi.org/10.1007/s13726-017-0516-2

    Article  Google Scholar 

  70. Ragab S, El Nemr A (2018) Nanofiber cellulose di- and tri-acetate using ferric chloride as a catalyst promoting highly efficient synthesis under microwave irradiation. J Macromol Sci A Pure Appl Chem 55(2):124–134. https://doi.org/10.1080/10601325.2017.1387741

    Article  Google Scholar 

  71. Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC (2009) Removal of chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem Eng J 150:25–39. https://doi.org/10.1016/j.cej.2008.11.035

    Article  Google Scholar 

  72. Yorgun S, Vural N, Demiral H (2009) Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater 122(1-3):189–194. https://doi.org/10.1016/j.micromeso.2009.02.032

    Article  Google Scholar 

  73. Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegrad 102:274–280. https://doi.org/10.1016/j.ibiod.2015.03.009

    Article  Google Scholar 

  74. Sahu JN, Acharya J, Meikap BC (2010) Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Bioresour Technol 101(6):1974–1982. https://doi.org/10.1016/j.biortech.2009.10.031

    Article  Google Scholar 

  75. Köseoğlu E, Akmil-Basar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/j.apt.2015.02.006

    Article  Google Scholar 

  76. Nunn TR, Howard JB, Longwell JP, Peters WA (1985) Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind Eng Chem Process Des Dev 24(3):844–852. https://doi.org/10.1021/i200030a054

    Article  Google Scholar 

  77. Caturla F, Molina-Sabio M, Rodriguez-Reinoso F (1991) Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29:999–1007. https://doi.org/10.1016/0008-6223(91)90179-M

    Article  Google Scholar 

  78. Uçar S, Erdem M, Tay T, Karagöz S (2009) Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl Surf Sci 255(21):8890–8896. https://doi.org/10.1016/j.apsusc.2009.06.080

    Article  Google Scholar 

  79. Ragab S, El Nemr A (2019) Zirconyl chloride as a novel and efficient green Lewis acid catalyst for direct acetylation of cotton cellulose in the presence and absence of solvent. J Polym Res 26:156. https://doi.org/10.1007/s10965-019-1816

    Article  Google Scholar 

  80. Sing KSW, Everret DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  81. Mustafa R, Asmatulu E (2020) Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment. J Water Process Eng 35:101239. https://doi.org/10.1016/j.jwpe.2020.101239

    Article  Google Scholar 

  82. Dobahi A, Shu Y, Hasegawa T, Maruyama J, Iwasaki S, Shen Y, Uyama H (2015) Preparation of activated carbon by KOH Activation from Amygdalus Pedunculata shell and its application for electric double-layer capacitor. J Electrochem 83(5):351–353. https://doi.org/10.5796/electrochemistry.83.351

    Article  Google Scholar 

  83. Imamoglu M, Takir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husk. Desalination 228:108–113. https://doi.org/10.1016/j.desal.2007.08.011

    Article  Google Scholar 

  84. Gundogdu A, Duran C, Senturk HB, Soylak M, Imamoglu M, Onal Y (2013) Physicochemical characteristics of a novel activated carbon produced from tea industry waste. J Anal Appl Pyrolysis 104:249–259. https://doi.org/10.1016/j.jaap.2013.07.008

    Article  Google Scholar 

  85. Sahira J, Mandira A, Prasad BP, Ram RP (2013) Effect of activating agents on the activated carbons prepared from lapsi seed stone. Res J Chem Sci 3(5):19–24

    Google Scholar 

  86. Ekpete OA, Horsfall MJNR (2011) Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis hook f). Res J Chem Sci 1(3):10–17

    Google Scholar 

  87. Raposo F, De La Rubia MA, Borja R (2009) Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: influence of adsorbate/adsorbent mass ratio and particle size. J Hazard Mater 165(1-3):291–299. https://doi.org/10.1016/j.jhazmat.2008.09.106

    Article  Google Scholar 

  88. Saxena R, Saxena M, Lochab A (2020) Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. Chem Select 5:335–353. https://doi.org/10.1002/slct.201903542

    Article  Google Scholar 

  89. Arampatzidou AC, Deliyanni EA (2016) Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A. J Colloid Interface Sci 466:101–112. https://doi.org/10.1016/j.jcis.2015.12.003

    Article  Google Scholar 

  90. Mohanty K, Das D, Biswas MN (2005) Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem Eng J 115(1-2):121–131. https://doi.org/10.1016/j.cej.2005.09.016

    Article  Google Scholar 

  91. Kula I, Uğurlu M, Karaoğlu H, Çelik A (2008) Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99(3):492–501. https://doi.org/10.1016/j.biortech.2007.01.015

    Article  Google Scholar 

  92. Uğurlu M, Gürses A, Açıkyıldız M (2008) Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous Mesoporous Mater 111(1-3):228–235. https://doi.org/10.1016/j.micromeso.2007.07.034

    Article  Google Scholar 

  93. Boudrahem F, Aissani-Benissad F, Aït-Amar H (2009) Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manag 90(10):3031–3039. https://doi.org/10.1016/j.jenvman.2009.04.005

    Article  Google Scholar 

  94. Sağili H, Güzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004. https://doi.org/10.1016/j.jclepro.2015.12.055

    Article  Google Scholar 

  95. Üner O, Geçgel Ü, Bayrak Y (2019) Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arab J Chem 12:3621–3627. https://doi.org/10.1016/j.arabjc.2015.12.004

    Article  Google Scholar 

  96. Zhang Z, Luo X, Liu Y, Zhou P, Ma G, Lei Z, Lei L (2015) A low and highly efficient adsorbent (activated carbon) prepared from waste potato residue. J Taiwan Inst Chem Eng 49:206–211. https://doi.org/10.1016/j.jtice.2014.11.024

    Article  Google Scholar 

  97. Guo Y, Tan C, Sun J, Li W, Zhang J (2020) Zhao C (2020) Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J 381:122736. https://doi.org/10.1016/j.cej.2019.122736

    Article  Google Scholar 

  98. Balou S, Babak SE, Priye A (2020) Synergistic effect of nitrogen doping and ultra-microporosity on the performance of biomass and microalgae-derived activated carbons for CO2 capture. ACS Appl Mater Interfaces 12(38):42711–42722. https://doi.org/10.1021/acsami.0c10218

    Article  Google Scholar 

Download references

Funding

This work is partially financially supported by the Science and Technological Development Fund (STDF) of Egypt (Project No. CB-4874 and CB-22816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Nemr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nemr, A., Aboughaly, R.M., El Sikaily, A. et al. Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons. Biomass Conv. Bioref. 13, 1613–1631 (2023). https://doi.org/10.1007/s13399-021-01457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01457-2

Keywords

Navigation