Skip to main content

Advertisement

Log in

Microalgae Consortia for Post-treating Effluent of Anaerobic Digestion of Cattle Waste and Evaluation of Biochemical Composition of Biomass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The aim of this study is to cultivate Spirulina platensis and Scenedesmus obliquus microalgae in consortia using effluents of cattle waste anaerobic treatment in order to give possibilities to the production of microalgae biomass to biorefineries uses. The biomasses obtained were characterized to evaluate the potential for the production of biofuels and other bioproducts. The effluent was used in sterile and non-sterile conditions to better understand the influence of other microorganisms in N and P removal. The biomass obtained with the addition of 10% of sterile effluent in Zarrouk media (20%) presented 44.12 and 34.62% of carbohydrates, using Spirulina platensis in monoculture or the 50%/50% consortia of Spirulina and Scenedesmus, respectively, this biomass presenting the potential to be used to bioethanol production. Nitrogen and phosphorous removal were higher in non-sterile conditions and reached 92.7 and 49.66% of nitrogen and phosphorous removal, respectively, using the consortia and with the addition of 30% effluent in the media. The cultivation of microalgae in a consortium may be used to assist the treatment of water concurrently with the production of biomass to different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Vadiveloo A, Nwoba EG, Moheimani NR (2019) Viability of combining microalgae and macroalgae cultures for treating anaerobically digested piggery effluent. J Environ Sci 82:132–144. https://doi.org/10.1016/j.jes.2019.03.003

    Article  Google Scholar 

  2. Souza MP De, Hoeltz M, Gressler PD et al (2019) Potential of microalgal bioproducts: general perspectives and main challenges. Waste Biomass Valori 10:2139–21560. https://doi.org/10.1007/s12649-018-0253-6

  3. Vieira Salla AC, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV (2016) Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 209:133–141. https://doi.org/10.1016/j.biortech.2016.02.069

    Article  CAS  PubMed  Google Scholar 

  4. Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96:555–564. https://doi.org/10.1007/s00253-012-4338-z

    Article  CAS  PubMed  Google Scholar 

  5. Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2:17. https://doi.org/10.1186/s40643-015-0045-9

  6. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  7. Popp J, Lakner Z, Harangi-rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578. https://doi.org/10.1016/j.rser.2014.01.056

    Article  Google Scholar 

  8. Colla LM, Margarites F et al (2019) Waste biomass and blended bioresources in biogas production.  Improv Biogas Prod 01:1–23. https://doi.org/10.1007/978-3-030-10516-7_1

  9. Myeong H, Hoon C, Bae H (2017) Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresour Technol 233:44–50. https://doi.org/10.1016/j.biortech.2017.02.040

    Article  CAS  Google Scholar 

  10. Man H, Liu H, Xiao Q, Deng F, Yu Q, Wang K, Yang Z, Wu Y, He K, Hao J (2018) How ethanol and gasoline formula changes evaporative emissions of the vehicles. Appl Energy 222:584–594. https://doi.org/10.1016/j.apenergy.2018.03.109

    Article  CAS  Google Scholar 

  11. Daylan B, Ciliz N (2016) Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renew Energy 89:578–587. https://doi.org/10.1016/j.renene.2015.11.059

    Article  CAS  Google Scholar 

  12. Mohammadi M, Mowla D, Esmaeilzadeh F, Ghasemi Y (2018) Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: a batch study. J Environ Chem Eng 6:2812–2820. https://doi.org/10.1016/J.JECE.2018.04.037

    Article  CAS  Google Scholar 

  13. Jebali A, Acién FG, Sayadi S, Molina-Grima E (2018) Utilization of centrate from urban wastewater plants for the production of Scenedesmus sp. in a raceway-simulating reactor. J Environ Manag 211:112–124. https://doi.org/10.1016/j.jenvman.2018.01.043

    Article  CAS  Google Scholar 

  14. Rempel A, Biolchi G, Antunes AC et al (2020) Cultivation of microalgae in media added of emergent pollutants and effect on growth, chemical composition, and use of biomass to enzymatic hydrolysis. Bioenergy Res 14:265–277. https://doi.org/10.1007/s12155-020-10177-w

    Article  CAS  Google Scholar 

  15. Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM (2021) Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Sci Total Environ 772:144918. https://doi.org/10.1016/j.scitotenv.2020.144918

    Article  CAS  PubMed  Google Scholar 

  16. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193. https://doi.org/10.1016/j.biortech.2010.06.139

    Article  CAS  PubMed  Google Scholar 

  17. Zaparoli M, Ziemniczak FG, Mantovani L et al (2020) Cellular stress conditions as a strategy to increase carbohydrate productivity in Spirulina platensis. Bioenergy Res 13:1221–1234. https://doi.org/10.1007/s12155-020-10133-8

  18. Wang S, Stiles AR, Guo C, Liu C (2015) Harvesting microalgae by magnetic separation: a review. Algal Res 9:178–185. https://doi.org/10.1016/j.algal.2015.03.005

    Article  CAS  Google Scholar 

  19. Harun R, Danquah K, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203. https://doi.org/10.1002/jctb.2287

    Article  CAS  Google Scholar 

  20. Magro FG, Margarites AC, Reinehr CO, Gonçalves GC, Rodigheri G, Costa JAV, Colla LM (2017) Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds. Environ Technol 3330:1–10. https://doi.org/10.1080/09593330.2017.1340352

    Article  CAS  Google Scholar 

  21. Ruiz-Martinez A, Serralta J, Pachés M, Seco A, Ferrer J (2014) Mixed microalgae culture for ammonium removal in the absence of phosphorus: effect of phosphorus supplementation and process modeling. Process Biochem 49:2249–2257. https://doi.org/10.1016/j.procbio.2014.09.002

    Article  CAS  Google Scholar 

  22. Davis RW, Siccardi AJ, Huysman ND et al (2015) Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresour Technol 198:577–585. https://doi.org/10.1016/j.biortech.2015.09.070

    Article  CAS  PubMed  Google Scholar 

  23. Almomani FA, Örmeci B (2016) Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol Eng 95:280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038

    Article  Google Scholar 

  24. Marazzi F, Bellucci M, Fantasia T, Ficara E, Mezzanotte V (2020) Interactions between microalgae and bacteria in the treatment of wastewater from milk whey processing. Water 12:297. https://doi.org/10.3390/w12010297

    Article  CAS  Google Scholar 

  25. Wang Y, Wang S, Sun L, Sun Z, Li D (2020) Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Res 47:101840. https://doi.org/10.1016/j.algal.2020.101840

    Article  Google Scholar 

  26. Pires JCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053. https://doi.org/10.1016/j.rser.2012.02.055

    Article  CAS  Google Scholar 

  27. Batista AP, Ambrosano L, Graça S, Sousa C, Marques PASS, Ribeiro B, Botrel EP, Castro Neto P, Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production—an integrated microalgae-based approach. Bioresour Technol 184:230–235. https://doi.org/10.1016/j.biortech.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  28. Posadas E, Morales M, Gomez C et al (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248. https://doi.org/10.1016/j.cej.2014.12.059

    Article  CAS  Google Scholar 

  29. Koreiviene J, Valčiukas R, Karosiene J, Baltrenas P (2014) Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landsc Manag 22:105–114. https://doi.org/10.3846/16486897.2013.911182

    Article  Google Scholar 

  30. Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140:14–19. https://doi.org/10.1016/j.apenergy.2014.11.045

    Article  CAS  Google Scholar 

  31. Choong YJ, Yokoyama H, Matsumura Y, Lam MK, Uemura Y, Dasan YK, Kadir WNA, Lim JW (2020) The potential of using microalgae for simultaneous oil removal in wastewater and lipid production. Int J Environ Sci Technol 17:2755–2766. https://doi.org/10.1007/s13762-020-02701-4

    Article  CAS  Google Scholar 

  32. Zarrouk C (1966) Contribution to the study of a Cyanophycea: influence of various physical and chemical factors on the growth and photosynthesis of Spirulina platensis (Thesis). University of Paris

  33. De Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352. https://doi.org/10.1007/s10529-007-9394-6

    Article  CAS  PubMed  Google Scholar 

  34. Lv J, Guo J, Feng J, Liu Q, Xie S (2016) A comparative study on flocculating ability and growth potential of two microalgae in simulated secondary effluent. Bioresour Technol 205:111–117. https://doi.org/10.1016/j.biortech.2016.01.047

    Article  CAS  PubMed  Google Scholar 

  35. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association/American Water Works Association/ Water Environment Federation, Washington DC

    Google Scholar 

  36. AOAC (2000) Official methods of analysis of AOAC International, 17th edn. Association of official analytical chemists, Gaithersburg

    Google Scholar 

  37. Gómez-Serrano C, Morales-Amaral MM, Acién FG, Escudero R, Fernández-Sevilla JM, Molina-Grima E (2015) Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl Microbiol Biotechnol 99:6931–6944. https://doi.org/10.1007/s00253-015-6694-y

    Article  CAS  PubMed  Google Scholar 

  38. Costa JAV, Colla LM, Filho PD (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  39. Dubois M, Gilles K, Hamilton J et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  40. Lowry OH (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  41. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2a edn. McGraw-Hill, Singapore isbn:0-07-Y66601-6

    Google Scholar 

  42. Margarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, Costa JAV (2016) Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Environ Technol 3330:1–8. https://doi.org/10.1080/09593330.2016.1254685

    Article  CAS  Google Scholar 

  43. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240. https://doi.org/10.1016/j.copbio.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  44. Tuantet K, Janssen M, Temmink H, Zeeman G, Wijffels RH, Buisman CJN (2014) Microalgae growth on concentrated human urine. J Appl Phycol 26:287–297. https://doi.org/10.1007/s10811-013-0108-2

    Article  CAS  Google Scholar 

  45. He PJ, Mao B, Shen CM, Shao LM, Lee DJ, Chang JS (2013) Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol 129:177–181. https://doi.org/10.1016/j.biortech.2012.10.162

    Article  CAS  PubMed  Google Scholar 

  46. Sniffen KD, Sales CM, Olson MS (2018) The fate of nitrogen through algal treatment of landfill leachate. Algal Res 30:50–58. https://doi.org/10.1016/j.algal.2017.12.010

    Article  Google Scholar 

  47. Hultberg M, Lind O, Birgersson G, Asp H (2017) Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess Biosyst Eng 40:625–631. https://doi.org/10.1007/s00449-016-1726-2

    Article  CAS  PubMed  Google Scholar 

  48. Morales-Amaral M d M, Gómez-Serrano C, Acién FG et al (2015) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108. https://doi.org/10.1016/j.algal.2015.08.020

    Article  Google Scholar 

  49. Gamfeldt L, Hillebrand H (2011) Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales. PLoS One 6:e21972. https://doi.org/10.1371/journal.pone.0021972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Behl S, Donval A, Stibor H (2011) The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities. Limnol Oceanogr 56:683–694. https://doi.org/10.4319/lo.2011.56.2.0683

    Article  CAS  Google Scholar 

  51. Gonçalves AL, Pires JCM, Simões M (2016) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  52. Hena S, Znad H, Heong KT, Judd S (2018) Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res 128:267–277. https://doi.org/10.1016/j.watres.2017.10.057

    Article  CAS  PubMed  Google Scholar 

  53. de Mendonça HV, Ometto JPHB, Otenio MH, Marques IPR, dos Reis AJD (2018) Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: comparison between batch and continuous operation. Sci Total Environ 633:1–11. https://doi.org/10.1016/j.scitotenv.2018.03.157

    Article  CAS  PubMed  Google Scholar 

  54. Paddock MB, Fernández-Bayo JD, VanderGheynst JS (2020) The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production. Appl Microbiol Biotechnol 104:893–905. https://doi.org/10.1007/s00253-019-10246-x

    Article  CAS  PubMed  Google Scholar 

  55. Rada-Ariza AM, Lopez-Vazquez CM, van der Steen NP, Lens PNL (2017) Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresour Technol 245:81–89. https://doi.org/10.1016/j.biortech.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  56. Scherer MD, de Oliveira AC, Filho FJCM, Ugaya CML, Mariano AB, Vargas JVC (2017) Environmental study of producing microalgal biomass and bioremediation of cattle manure effluents by microalgae cultivation. Clean Techn Environ Policy 19:1745–1759. https://doi.org/10.1007/s10098-017-1361-x

    Article  CAS  Google Scholar 

  57. Luo L, Ren H, Pei X, Xie G, Xing D, Dai Y, Ren N, Liu B (2019) Simultaneous nutrition removal and high-efficiency biomass and lipid accumulation by microalgae using anaerobic digested effluent from cattle manure combined with municipal wastewater. Biotechnol Biofuels 12:1–15. https://doi.org/10.1186/s13068-019-1553-1

    Article  CAS  Google Scholar 

  58. Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239. https://doi.org/10.1016/j.algal.2018.11.020

    Article  Google Scholar 

  59. Choi KJ, Han TH, Yoo G, Cho MH, Hwang SJ (2018) Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J Civ Eng 22:3215–3221. https://doi.org/10.1007/s12205-017-0730-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University of Passo Fundo for the scholarships.

Author information

Authors and Affiliations

Authors

Contributions

Francisco G. Magro: conceptualization, methodology, formal analysis and investigation, and writing. João F. Freitag and André Bergoli: methodology and writing. Jorge A.V. Costa: review. Luciane Maria Colla: conceptualization, writing, reviewing and editing, and supervision.

Corresponding author

Correspondence to Luciane M. Colla.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors declare consent for publication of this article, being represented by the author for correspondence.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1110 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magro, F.G., Freitag, J.F., Bergoli, A. et al. Microalgae Consortia for Post-treating Effluent of Anaerobic Digestion of Cattle Waste and Evaluation of Biochemical Composition of Biomass. Bioenerg. Res. 15, 371–384 (2022). https://doi.org/10.1007/s12155-021-10270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10270-8

Keywords

Navigation