Skip to main content
Log in

Analysis on multi-mode nonlinear resonance and jump behavior of an asymmetric rolling bearing rotor

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper takes an asymmetric support ball bearing-rotor system subjected by unbalanced force and parametric excitation (varying compliance) as the research object. Multi-modes of resonance such as natural frequency resonance region of each order, VC (varying compliance) frequency resonance region, the 1/2 sub-harmonic VC frequency resonance region, and quasi-periodic regions, and the nonlinear characteristics in these regions are analyzed. Besides, the effect of the number of balls of the ball bearing is also considered and the result shows that the parity of this parameter matters a lot. By introducing a definition of the absolute quasi-periodic frequency, the law of the occurrence of the quasi-periodic motion is demonstrated and the possible cause is given to some extent. The work provides a theoretical basis for clarifying the nonlinear characteristics of the bearing-rotor system and suppressing the nonlinear behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibration of ball bearings: computer simulation. Bull. JSME 28(239), 899–904 (1985)

    Article  Google Scholar 

  2. Mevel, B., Guyader, J.L.: Routes to chaos in ball bearings. J. Sound Vib. 162(3), 471–87 (1993)

    Article  Google Scholar 

  3. Mevel, B., Guyader, J.L.: Experiments on routes to chaos in ball bearings. J. Sound Vib. 318(3), 549–64 (2008)

    Article  Google Scholar 

  4. Saito, S.: Calculation of nonlinear unbalance response of horizontal Jeffcott rotors supported by ball bearings with radial clearances. J. Vib. Acoust. 107(4), 416–420 (1985)

    Article  Google Scholar 

  5. Feng, N.S., Hahn, E.J.: Rolling element bearing non-linearity effects. In: Turbo Expo: Power for Land, Sea, and Air, vol. 78576, p. V004T03A034. American Society of Mechanical Engineers (2000)

  6. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–79 (2000)

    Article  Google Scholar 

  7. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–56 (2000)

    Article  Google Scholar 

  8. Bai, C.Q., Xu, Q.Y., Zhang, X.L.: Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance. Appl. Math. Mech. 27(2), 175–86 (2006)

    Article  Google Scholar 

  9. Kostek, R.: Analysis of the primary and superharmonic contact resonances—Part 1. J. Theor. Appl. Mech. 51(2), 475–486 (2013)

    Google Scholar 

  10. Harsha, S.P., Sandeep, K., Prakash, R.: The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. Int. J. Mech. Sci. 45(4), 725–40 (2003)

    Article  Google Scholar 

  11. Harsha, S.P.: Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect. Mech. Mach. Theory 41(6), 688–706 (2006)

    Article  Google Scholar 

  12. Gupta, T.C., Gupta, K., Sehgal, D.K.: Nonlinear vibration analysis of an unbalanced flexible rotor supported by ball bearings with radial internal clearance. In: Turbo Expo: Power for Land, Sea, and Air, vol. 43154, pp. 1289–1298 (2008)

  13. Jin, Y., Yang, R., Hou, L., Chen, Y., Zhang, Z.: Experiments and numerical results for varying compliance contact resonance in a rigid rotor-ball bearing system. J. Tribol. 139(4), 041103 (2017)

    Article  Google Scholar 

  14. Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13(4), 804–21 (2008)

    Article  Google Scholar 

  15. Maraini, D., Nataraj, C.: Nonlinear analysis of a rotor-bearing system using describing functions. J. Sound Vib. 420, 227–41 (2018)

    Article  Google Scholar 

  16. Yang, Y.F., Wu, Q.Y., Wang, Y.L., Qin, W.Y., Lu, K.: Dynamic characteristics of cracked uncertain hollow-shaft. Mech. Syst. Signal Process. 124, 36–48 (2019)

    Article  Google Scholar 

  17. Sinou, J.J.: Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings. Mech. Mach. Theory 44(9), 1713–32 (2009)

    Article  Google Scholar 

  18. Zhang, Z., Chen, Y., Cao, Q.: Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J. Sound Vib. 350, 171–84 (2015)

    Article  Google Scholar 

  19. Harsha, S.P., Sandeep, K., Prakash, R.: Effects of preload and number of balls on nonlinear dynamic behavior of ball bearing system. Int. J. Nonlinear Sci. Numer. Simul. 4(3), 265–78 (2003)

    Article  Google Scholar 

  20. Aktürk, N., Uneeb, M., Gohar, R.: The effects of number of balls and preload on vibrations associated with ball bearings. J. Tribol. 119(4), 747–753 (1997)

    Article  Google Scholar 

  21. Hou, L., Chen, Y.S., Cao, Q.J., Zhang, Z.Y.: Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn. 79(1), 229–240 (2015)

    Article  Google Scholar 

  22. Zhang, Z.Y., Chen, Y.S., Li, Z.G.: Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing. Sci. China Technol. Sci. 58(5), 775–782 (2015)

    Article  Google Scholar 

  23. Chen, H.Z., Hou, L., Chen, Y.S.: Bifurcation analysis of a rigid-rotor squeeze film damper system with unsymmetrical stiffness supports. Arch. Appl. Mech. 87(8), 1347–1364 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2018BA021 and ZR2018QA005 ), the China Postdoctoral Science Foundation (Grant No. 2017M622259), and the National Natural Science Foundation of China (Grant Nos. 11502161, 11902184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Shun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Expanded form of Eq. (1)

$$\begin{aligned} \left\{ \begin{array}{l} m\ddot{x}+c_{1}(\dot{x}-\dot{x}_{1})-c_{2}(\dot{\theta }_{y}-\dot{\theta } _{y1})+k_{rr}(x-x_{1})-k_{r\varphi }(\theta _{y}-\theta _{y1})=m\delta \Omega ^{2}\cos \Omega t\\ m\ddot{y}+c_{1}(\dot{y}-\dot{y}_{1})+c_{2}(\dot{\theta }_{x}-\dot{\theta } _{x1})+k_{rr}(y-y_{1})+k_{r\varphi }(\theta _{x}-\theta _{x1})=m\delta \Omega ^{2}\sin \Omega t-mg\\ J_{d}\ddot{\theta }_{x}+J_{p}\Omega \dot{\theta }_{y}+c_{3}(\dot{y}-\dot{y} _{1})+c_{4}(\dot{\theta }_{x}-\dot{\theta }_{x1})+k_{\varphi r}(y-y_{1} )+k_{\varphi \varphi }(\theta _{x}-\theta _{x1})=0\\ J_{d}\ddot{\theta }_{y}-J_{p}\Omega \dot{\theta }_{x}-c_{3}(\dot{x}-\dot{x} _{1})+c_{4}(\dot{\theta }_{y}-\dot{\theta }_{y1})-k_{\varphi r}(x-x_{1} )+k_{\varphi \varphi }(\theta _{y}-\theta _{y1})=0\\ m_{a}\ddot{x}_{a}-\gamma _{2}c_{1}(\dot{x}-\dot{x}_{1})+\gamma _{2}c_{2} (\dot{\theta }_{y}-\dot{\theta }_{y1})-\gamma _{2}k_{rr}(x-x_{1})+\gamma _{2}k_{r\varphi }(\theta _{y}-\theta _{y1})+F_{bx1}=0\\ m_{a}\ddot{y}_{a}-\gamma _{2}c_{1}(\dot{y}-\dot{y}_{1})-\gamma _{2}c_{2} (\dot{\theta }_{x}-\dot{\theta }_{x1})-\gamma _{2}k_{rr}(y-y_{1})-\gamma _{2}k_{r\varphi }(\theta _{x}-\theta _{x1})+F_{by1}=-m_{a}g\\ m_{b}\ddot{x}_{b}-\gamma _{1}c_{1}(\dot{x}-\dot{x}_{1})+\gamma _{1}c_{2} (\dot{\theta }_{y}-\dot{\theta }_{y1})-\gamma _{1}k_{rr}(x-x_{1})+\gamma _{1}k_{r\varphi }(\theta _{y}-\theta _{y1})+F_{bx2}=0\\ m_{b}\ddot{y}_{b}-\gamma _{1}c_{1}(\dot{y}-\dot{y}_{1})-\gamma _{1}c_{2} (\dot{\theta }_{x}-\dot{\theta }_{x1})-\gamma _{1}k_{rr}(y-y_{1})-\gamma _{1}k_{r\varphi }(\theta _{x}-\theta _{x1})+F_{by2}=-m_{b}g\\ m_{o}\ddot{x}_{o}+k_{a}x_{o}-F_{bx2}=0\\ m_{o}\ddot{y}_{o}+k_{a}y_{o}-F_{by2}=-m_{o}g \end{array} \right. \end{aligned}$$

where \(x_{1}=\gamma _{2}x_{a}+\gamma _{1}x_{b}\), \(y_{1}=\gamma _{2} y_{a}+\gamma _{1}y_{b}\), \(\theta _{x1}=(y_{b}-y_{a})/l\) and \(\theta _{y1} =(x_{a}-x_{b})/l\) represent the disk center’s rigid body displacements and rotation angles, respectively; \(l=l_{1}+l_{2}\) is the total length of the rotating shaft; \(l_{1}\) is the length of left part of the shaft, while \(l_{2}\) is the right; m, \(m_{a}\), \(m_{b}\) and \(m_{o}\) represent the equivalent mass of the hub, the left and right journals and the outer ring of the bearing, respectively; \(k_{rr}\), \(k_{r\varphi }\), \(k_{\varphi r}\) and \(k_{\varphi \varphi }\) represent the equivalent stiffness of the shaft in different directions, respectively; \(J_{d}\) and \(J_{p}\) represent the moment of inertia and pole moment of inertia of the wheel equator, respectively; \(c_{1}-c_{4}\) represent the equivalent damping coefficients of the rotating shaft; \(\gamma _{1}\) and \(\gamma _{2}\) are the length proportional coefficients, respectively, in which \(\gamma _{1}=l_{1}/l\ \)and \(\gamma _{2}=l_{2}/l\); \(\delta \) represents the eccentricity of the unbalanced mass; \(F_{bx1}\) and \(F_{by1}\) are the horizontal and vertical bearing forces at the left end, respectively; \(F_{bx2}\) and \(F_{by2}\) are the horizontal and vertical bearing force at the right end, respectively; g is the gravitational acceleration.

Expanded form of Eq. (5)

$$\begin{aligned}&\left\{ \begin{array}{l} q_{1}^{^{\prime \prime }}+\zeta _{1}q_{1}^{^{\prime }}-\zeta _{2}q_{4}^{^{\prime } }-(\zeta _{2}+\zeta _{1}\gamma _{2})q_{5}^{^{\prime }}+(\zeta _{2}-\gamma _{1} \zeta _{1})q_{7}^{^{\prime }}+\kappa _{1}q_{1}-\kappa _{2}q_{4}\\ -(\kappa _{2}+\kappa _{1}\gamma _{2})q_{5}+(\kappa _{2}-\gamma _{1}\kappa _{1} )q_{7}=U_{1}\cos \tau \\ q_{2}^{^{\prime \prime }}+\zeta _{1}q_{2}^{^{\prime }}-\zeta _{2}q_{3}^{^{\prime } }-(\zeta _{2}+\zeta _{1}\gamma _{2})q_{6}^{^{\prime }}+(\zeta _{2}-\gamma _{1} \zeta _{1})q_{8}^{^{\prime }}+\kappa _{1}q_{2}-\kappa _{2}q_{3}\\ -(\kappa _{2}+\kappa _{1}\gamma _{2})q_{6}+(\kappa _{2}-\gamma _{1}\kappa _{1} )q_{8}=U_{1}\sin \tau -W\\ \alpha _{0}q_{3}^{^{\prime \prime }}+\alpha _{0}\eta q_{4}^{^{\prime }}+\zeta _{3}q_{2}^{^{\prime }}+\zeta _{4}q_{3}^{^{\prime }}-(\zeta _{4}+\zeta _{3} \gamma _{2})q_{6}^{^{\prime }}+(\zeta _{4}-\gamma _{1}\zeta _{3})q_{8}^{^{\prime } }+\kappa _{3}q_{2}+\kappa _{4}q_{3}\\ -(\kappa _{4}+\kappa _{3}\gamma _{2})q_{6}+(\kappa _{4}-\gamma _{1}\kappa _{3} )q_{8}=0\\ \alpha _{0}q_{4}^{^{\prime \prime }}-\alpha _{0}\eta q_{3}^{^{\prime }}-\zeta _{3}q_{1}^{^{\prime }}+\zeta _{4}q_{4}^{^{\prime }}+(\zeta _{4}+\zeta _{3} \gamma _{2})q_{5}^{^{\prime }}-(\zeta _{4}-\gamma _{1}\zeta _{3})q_{7}^{^{\prime } }-\kappa _{3}q_{1}+\kappa _{4}q_{4}\\ +(\kappa _{4}+\kappa _{3}\gamma _{2})q_{5}-(\kappa _{4}-\gamma _{1}\kappa _{3} )q_{7}=0 \end{array} \right. \\&\left\{ \begin{array}{l} \alpha _{1}q_{5}^{^{\prime \prime }}-\gamma _{2}\zeta _{1}q_{1}^{^{\prime }} +\gamma _{2}\zeta _{2}q_{4}^{^{\prime }}+\gamma _{2}(\zeta _{2}+\gamma _{2}\zeta _{1})q_{5}^{^{\prime }}-\gamma _{2}(\zeta _{2}-\gamma _{1}\zeta _{1})q_{7} ^{^{\prime }}-\gamma _{2}\kappa _{1}q_{1}+\gamma _{2}\kappa _{2}q_{4}\\ +\gamma _{2}(\kappa _{2}+\gamma _{2}\kappa _{1})q_{5}-\gamma _{2}(\kappa _{2} -\gamma _{1}\kappa _{1})q_{7}+\bar{C}_{b}\bar{F}_{bx1}=0\\ \alpha _{1}q_{6}^{^{\prime \prime }}-\gamma _{2}\zeta _{1}q_{2}^{^{\prime }} -\gamma _{2}\zeta _{2}q_{3}^{^{\prime }}+\gamma _{2}(\zeta _{2}+\gamma _{2}\zeta _{1})q_{6}^{^{\prime }}-\gamma _{2}(\zeta _{2}-\gamma _{1}\zeta _{1})q_{8} ^{^{\prime }}-\gamma _{2}\kappa _{1}q_{2}-\gamma _{2}\kappa _{2}q_{3}\\ +\gamma _{2}(\kappa _{2}+\gamma _{2}\kappa _{1})q_{6}-\gamma _{2}(\kappa _{2} -\gamma _{1}\kappa _{1})q_{8}+\bar{C}_{b}\bar{F}_{by1}=-\alpha _{1}W \end{array} \right. \\&\left\{ \begin{array}{l} \alpha _{2}q_{7}^{^{\prime \prime }}-\gamma _{1}\zeta _{1}q_{1}^{^{\prime }} +\gamma _{1}\zeta _{2}q_{4}^{^{\prime }}+\gamma _{1}(\zeta _{2}+\gamma _{2}\zeta _{1})q_{5}^{^{\prime }}-\gamma _{1}(\zeta _{2}-\gamma _{1}\zeta _{1})q_{7} ^{^{\prime }}-\gamma _{1}\kappa _{1}q_{1}+\gamma _{1}\kappa _{2}q_{4}\\ +\gamma _{1}(\kappa _{2}+\gamma _{2}\kappa _{1})q_{5}-\gamma _{1}(\kappa _{2} -\gamma _{1}\kappa _{1})q_{7}+\bar{C}_{b}\bar{F}_{bx2}=0\\ \alpha _{2}q_{8}^{^{\prime \prime }}-\gamma _{1}\zeta _{1}q_{2}^{^{\prime }} -\gamma _{1}\zeta _{2}q_{3}^{^{\prime }}+\gamma _{1}(\zeta _{2}+\gamma _{2}\zeta _{1})q_{6}^{^{\prime }}-\gamma _{1}(\zeta _{2}-\gamma _{1}\zeta _{1})q_{8} ^{^{\prime }}-\gamma _{1}\kappa _{1}q_{2}-\gamma _{1}\kappa _{2}q_{3}\\ +\gamma _{1}(\kappa _{2}+\gamma _{2}\kappa _{1})q_{6}-\gamma _{1}(\kappa _{2} -\gamma _{1}\kappa _{1})q_{8}+\bar{C}_{b}\bar{F}_{by2}=-\alpha _{2}W \end{array} \right. \\&\left\{ \begin{array}{l} \alpha _{3}q_{9}^{^{\prime \prime }}+\kappa _{5}q_{9}-\bar{C}_{b}\bar{F}_{bx1}=0\\ \alpha _{3}q_{10}^{^{\prime \prime }}+\kappa _{5}q_{10}-\bar{C}_{b}\bar{F} _{by1}=-\alpha _{2}W \end{array} \right. \end{aligned}$$

where \(q_{1}=x/c\), \(q_{2}=y/c\), \(q_{3}=\theta _{x}l/c\), \(q_{4}=\theta _{y}l/c\), \(q_{5}=x_{a}/c\), \(q6=y_{a}/c\), \(q_{7}=x_{b}/c\) , \(q_{8}=y_{b}/c\), \(q_{9}=x_{o}/c\) and \(q_{10}=y_{o}/c\) are dimensionless displacements of the disk center, the left and right journals, and the outer ring. The dimensionless forces \(\bar{F}_{bx1}\), \(\bar{F}_{bx2}\), \(\bar{F}_{by1}\), and \(\bar{F}_{by2}\) have same expressions as shown in Eqs. (3) and (4), respectively, just with the replacement of the corresponding dimensionless parameters.

All other dimensionless parameters are listed as \(\alpha _{0}=J_{d}/ml^{2}\), \(\alpha _{1}=m_{a}/m\), \(\alpha _{2}=m_{b}/m\), \(\alpha _{3}=m_{o}/m\), \(\kappa _{1}=k_{rr}/m\Omega ^{2}\), \(\kappa _{2}=k_{r\varphi }/ml\Omega ^{2}\), \(\kappa _{3}=k_{\varphi r}/ml\Omega ^{2}\), \(\kappa _{4}=k_{\varphi \varphi }/ml^{2} \Omega ^{2}\), \(\kappa _{5}=k_{a}/m\Omega ^{2}\), \(\zeta _{1}=c_{1}/m\Omega \), \(\zeta _{2}=c_{2}/ml\Omega \), \(\zeta _{3}=c_{3}/ml\Omega \), \(\zeta _{4} =c_{4}/ml^{2}\Omega \), \(\eta =J_{p}/J_{d}\), \(U_{1}=\delta _{1}/c\), \(\bar{C} _{b}=C_{b}c^{0.5}/m\Omega ^{2}\), and \(W=g/c\Omega ^{2}\) , in which \(c=mg/k\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huizheng, C., Shun, Z., Zhenyong, L. et al. Analysis on multi-mode nonlinear resonance and jump behavior of an asymmetric rolling bearing rotor. Arch Appl Mech 91, 2991–3009 (2021). https://doi.org/10.1007/s00419-021-01944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01944-y

Keywords

Navigation