Skip to main content
Log in

Complexity-scalable HEVC-to-AV1 video transcoding based on partition inheritance

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

After the AOMedia Video 1 (AV1) bitstream specification was launched by the Alliance for Open Media, the need for converting legacy content encoded with the state-of-the-art High Efficiency Video Coding (HEVC) standard to the new format has arisen in several scenarios. However, transcoding is a complex task composed of a decoding and an encoding process in sequence, which requires long processing times and high energy consumption. This paper presents a complexity-scalable HEVC-to-AV1 transcoding scheme, which comprises 25 configuration modes chosen based on a Pareto Optimization strategy and built upon the correlation between block size decisions in HEVC and AV1. The configurations allow the AV1 encoder to inherit partitioning information from the HEVC bitstream to constrain the AV1 reencoding process, thus speeding up the transcoding operation. Experimental results showed that the proposed transcoding complexity reduction ranges from 0.41 up to 35.06%, on average, with coding efficiency losses that vary between 0.0536 and 5.3801%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bross, B., Han, W., Ohm, J., Sullivan, G., Wang, Y., Wiegand, T.: High Efficiency Video Coding (HEVC): text specification draft 10 (for FDIS and Consent). In: 12th JCT-VC Meeting, Geneva, (JCTVC-L1003) (2013)

  2. Lederer, S.: Bitmovin video developer report 2019, Bitmovin, 6 September (2019). https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency/. Accessed 4 Jan 2021

  3. Vaughan, T.: HEVC advance reduces proposed license fees (2015). http://x265.org/hevc-advance-reduces-proposed-license-fees/. Accessed 8 Nov 2019

  4. Ozer, J.: A video codec licensing update, streaming media (2019). https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=129386. Accessed 21 Dec 2019

  5. Alliance for Open Media, Alliance for Open Media (2015). http://aomedia.org. Accessed 20 Feb 2018

  6. XIPH, Daala video compression (2012). https://xiph.org/daala. Accessed 20 Feb 2018

  7. Systems, Cisco, Thor video codec (2015). https://tools.ietf.org/html/draft-fuldseth-netvc-thor-03. Accessed 20 Feb 2018

  8. Google, VP9 video codec (2012). https://www.webmproject.org/vp9. Accessed 20 Feb 2018

  9. Chen, Y., et al.: An overview of core coding tools in the AV1 video codec. In: 2018 Picture Coding Symposium, PCS 2018—Proceedings, pp. 41–45 (2018). https://doi.org/10.1109/PCS.2018.8456249

  10. Rivaz, P.D., Haughton, J.: AV1 bitstream & decoding process specification. Alliance for Open Media (2018). https://aomediacodec.github.io/av1-spec. Accessed 20 Aug 2018

  11. HEVC HM Software (2019). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/. Accessed 20 Feb 2018

  12. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves (2001). http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M33.doc. Accessed 15 Apr 2018

  13. Ahmad, I., Wei, X., Sun, Y., Zhang, Y.-Q.: Video transcoding: an overview of various techniques and research issues. IEEE Trans. Multimedia (2005). https://doi.org/10.1109/TMM.2005.854472

    Article  Google Scholar 

  14. Ding, D., Chen, G., Mukherjee, D., Joshi, U., Chen, Y.: A CNN-based in-loop filtering approach for AV1 video codec. In: 2019 Picture Coding Symposium (PCS), pp. 1–5 (2019). https://doi.org/10.1109/PCS48520.2019.8954565

  15. Joshi, U., Mukherjee, D., Chen, Y., Parker, S., Grange, A.: In-loop frame super-resolution in AV1. In: 2019 Picture Coding Symposium (PCS), pp. 1–5 (2019). https://doi.org/10.1109/PCS48520.2019.8954553

  16. Borges, A., Porto, M., Zatt, B., Correa, G.: Fast HEVC-to-AV1 transcoding based on coding unit depth inheritance. In: IEEE International Conference on Image Processing (2019). https://doi.org/10.1109/ICIP.2019.8803482

  17. Laude, T., Adhisantoso, Y.G., Voges, J., Munderloh, M., Ostermann, J.: A Comprehensive Video Codec Comparison. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/ATSIP.2019.23

    Book  Google Scholar 

  18. Tanou, J.L., Blestel, M.: Analysis of emerging video codecs: coding tools, compression efficiency. SMPTE Motion Imaging J. (2019). https://doi.org/10.5594/JMI.2019.2937736

    Article  Google Scholar 

  19. Liapin, I.: Fast H. 264/H. 265 to AV1 stream transcoding using a moving object tracker. In: 2018 International Symposium on Consumer Technologies (ISCT), pp. 9–13 (2018). https://doi.org/10.1109/ISCE.2018.8408927

  20. Sullivan, G., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process Mag. (1998). https://doi.org/10.1109/79.733497

    Article  Google Scholar 

  21. Daede, T., Norkin, A., Brailovskiy, I.: Video codec testing and quality measurement (2019). https://tools.ietf.org/html/draft-ietf-netvc-testing-08. Accessed 20 May 2019

  22. Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds) Search Methodologies. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_15

  23. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Corrê, G., Assunção, P.A., Agostini, L.V., da Silva Cruz, L.A.: Pareto-based method for high efficiency video coding with limited encoding time. IEEE Trans. Circuits Syst. Video Technol. 26(9), 1734–1745 (2016). https://doi.org/10.1109/TCSVT.2015.2469533

    Article  Google Scholar 

  25. Hwang, W., Lee, C., Peng, G.: Multi-objective optimization and characterization of pareto points for scalable coding. IEEE Trans. Circuits Syst. Video Technol. 29(7), 2096–2111 (2019). https://doi.org/10.1109/TCSVT.2018.2851999

    Article  Google Scholar 

  26. Hosseini, E., Pakdaman, F., Hashemi, M.R., et al.: Fine-grain complexity control of HEVC intra prediction in battery-powered video codecs. J. Real-Time Image Process. (2020). https://doi.org/10.1007/s11554-020-00996-7

    Article  Google Scholar 

  27. Fernández, D.G., Del Barrio, A.A., Botella, G., Meyer-Baese, U., Meyer-Baese, A., Grecos, C.: Information fusion based techniques for HEVC. In: Proc. SPIE 10223, Real-Time Image and Video Processing 2017, 102230M (2017). https://doi.org/10.1117/12.2262604

  28. Fernández, D.G., Del Barrio, A.A., Botella, G., García, C., Prieto, M., Hermida, R.: Complexity reduction in the HEVC/H265 standard based on smooth region classification. Digit. Signal Process 73, 24–39 (2018). https://doi.org/10.1016/j.dsp.2017.11.001

    Article  Google Scholar 

  29. Louafi, H., Coulombe, S., Cheriet, M.: Multi-objective optimization in dynamic content adaptation of slide documents. IEEE Trans. Serv. Comput. 10(2), 231–243 (2017)

    Article  Google Scholar 

  30. Bossen, F.: Common test conditions and software. In: 12th Meeting VCEG (JCTVC-L1100). Switzerland, Geneva (2013)

  31. Alliance for Open Media, AV1 codec library (2019). https://aomedia.googlesource.com/aom/. Accessed 20 Feb 2018

  32. ITU-R P.910: Subjective video quality assessment methods for multi-media applications (2008). https://www.itu.int/rec/T-REC-P.910-200804-I. Accessed 20 Feb 2018

  33. Liu, X., Zhu, W., Yoo, K.-Y.: Fast inter mode decision algorithm based on the MB activity for MPEG-2 to H.264/AVC transcoding. In: 2009 International Conference on Computational Science and Engineering (2009). https://doi.org/10.1109/CSE.2009.359

  34. Tang, Q., Nasiopoulos, P.: Efficient motion re-estimation with rate-distortion optimization for MPEG-2 to H.264/AVC transcoding. IEEE Trans. Circuits Syst. Video Technol. (2010). https://doi.org/10.1109/TCSVT.2009.2031521

    Article  Google Scholar 

  35. International Organization for Standardization, ISO/IEC 13818-2:1996. Information technology—generic coding of moving pictures and associated audio information: video (1996). https://www.iso.org/standard/22990.html. Accessed 20 Feb 2018

  36. International Telecommunication Union: Recommendation H.264: advanced video coding for generic audiovisual services (2003). https://www.itu.int/rec/T-REC-H.264/. Accessed 20 Feb 2018

Download references

Acknowledgements

This study was financed in part by the Coordena-ção de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, FAPEGS, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Borges.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A., Zatt, B., Porto, M. et al. Complexity-scalable HEVC-to-AV1 video transcoding based on partition inheritance. J Real-Time Image Proc 18, 2151–2163 (2021). https://doi.org/10.1007/s11554-021-01101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01101-2

Keywords

Navigation