Skip to main content

Advertisement

Log in

Multi-objective search group algorithm for thermo-economic optimization of flat-plate solar collector

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study aims to develop a multi-objective version of the search group algorithm (SGA) called the multi-objective search group algorithm (MOSGA) to help determine thermo-economic optimization of flat-plate solar collector (FPSC) systems. Search mechanisms of the SGA were modified to determine non-dominated solutions through mutation, generation, and selection stages. Authors also mined the Pareto archive with a selection mechanism to maintain and intensify convergence and distribution of solutions. The study tested the proposed MOSGA with well-known multi-objective benchmark problems. Results were compared with outcomes from conventional algorithms using the same performance metrics to validate the capability and performance of the MOSGA. Afterward, MOSGA was applied to find the best design parameters to simultaneously optimize thermal efficiency and the total annual cost of FPSC systems. Four case studies were conducted with four different working fluids (pure water, SiO2, Al2O3, and CuO nanofluids). Optimization results obtained by the MOSGA were analyzed and compared with solutions provided by other algorithms. The findings revealed relative improvement in thermal efficiency and reduced annual cost for all nanofluids compared to pure water. Thermal efficiency was improved by 2.2748%, 2.4298%, and 2.7948% for SiO2, Al2O3, and CuO case studies, respectively, compared to pure water. Meanwhile, TAC rates were increased by 2.4111%, 2.3403%, and 2.9133% for these case studies, respectively. Comparative results also demonstrated that MOGSA was robustly effective and superior in the selection of appropriate design parameters of FPSC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agency IE (2018) Renewables 2018

  2. Raj P, Subudhi S (2018) A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev 84:54–74. https://doi.org/10.1016/j.rser.2017.10.012

    Article  Google Scholar 

  3. Evangelisti L, De Lieto VR, Asdrubali F (2019) Latest advances on solar thermal collectors: a comprehensive review. Renew Sustain Energy Rev 114:109318. https://doi.org/10.1016/j.rser.2019.109318

    Article  Google Scholar 

  4. (2018) Renewables 2018 global status report. In: Green growth knowledge platform. https://www.greengrowthknowledge.org/resource/renewables-2018-global-status-report. Accessed 31 Oct 2019

  5. Kalogirou S (2003) The potential of solar industrial process heat applications. Appl Energy 76:337–361. https://doi.org/10.1016/S0306-2619(02)00176-9

    Article  Google Scholar 

  6. Karki S, Haapala KR, Fronk BM (2019) Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl Energy 254:113649. https://doi.org/10.1016/j.apenergy.2019.113649

    Article  Google Scholar 

  7. Jing OL, Bashir MJK, Kao J-J (2015) Solar radiation based benefit and cost evaluation for solar water heater expansion in Malaysia. Renew Sustain Energy Rev 48:328–335. https://doi.org/10.1016/j.rser.2015.04.031

    Article  Google Scholar 

  8. Huy TH, Nallagownden P, Kannan R (2019) Energetic optimization of solar water heating system with flat plate collector using search group algorithm. J Adv Res Fluid Mech Therm Sci 61:17

    Google Scholar 

  9. Farahat S, Sarhaddi F, Ajam H (2009) Exergetic optimization of flat plate solar collectors. Renew Energy 34:1169–1174. https://doi.org/10.1016/j.renene.2008.06.014

    Article  Google Scholar 

  10. Jafarkazemi F, Ahmadifard E (2013) Energetic and exergetic evaluation of flat plate solar collectors. Renew Energy 56:55–63. https://doi.org/10.1016/j.renene.2012.10.031

    Article  Google Scholar 

  11. Badr O, Mohammed A, Brahim D (2018) Optimization of the thermal performance of the solar water heater (SWH) using stochastic technique 10

  12. Wenceslas KY, Ghislain T (2019) Experimental validation of exergy optimization of a flat-plate solar collector in a thermosyphon solar water heater. Arab J Sci Eng 44:2535–2549. https://doi.org/10.1007/s13369-018-3227-x

    Article  Google Scholar 

  13. Khademi M, Jafarkazemi F, Ahmadifard E, Younesnejad S (2012) Optimizing exergy efficiency of flat plate solar collectors using SQP and genetic algorithm. AMM 253–255:760–765. https://doi.org/10.4028/www.scientific.net/AMM.253-255.760

    Article  Google Scholar 

  14. Siddhartha SN, Varun, (2012) A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater. Energy 38:406–413. https://doi.org/10.1016/j.energy.2011.11.026

    Article  Google Scholar 

  15. Siddhartha, Chauhan SR, Varun, Sharma N (2011) Thermal performance optimization of smooth flat plate solar air heater (SFPSAH) using simulated annealing: evaluation and comparisons. In: 2011 international conference utility exhibition on power and energy systems: issues and prospects for Asia (ICUE), pp 1–5

  16. Varun S (2010) Thermal performance optimization of a flat plate solar air heater using genetic algorithm. Appl Energy 87:1793–1799. https://doi.org/10.1016/j.apenergy.2009.10.015

    Article  Google Scholar 

  17. Varun SN, Bhat IK, Grover D (2011) Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique. Sol Energy 85:2331–2337. https://doi.org/10.1016/j.solener.2011.06.022

    Article  Google Scholar 

  18. Rao RV, Waghmare G (2015) Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm. Cog Eng 2:997421. https://doi.org/10.1080/23311916.2014.997421

    Article  Google Scholar 

  19. Şencan Şahin A (2012) Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm. Heat Mass Transf 48:1921–1928. https://doi.org/10.1007/s00231-012-1038-2

    Article  Google Scholar 

  20. Yıldırım C, Aydoğdu İ (2017) Artificial bee colony algorithm for thermohydraulic optimization of flat plate solar air heaters. J Mech Sci Technol 31:3593–3602. https://doi.org/10.1007/s12206-017-0647-6

    Article  Google Scholar 

  21. Jiandong Z, Hanzhong T, Susu C (2015) Numerical simulation for structural parameters of flat-plate solar collector. Sol Energy 117:192–202. https://doi.org/10.1016/j.solener.2015.04.027

    Article  Google Scholar 

  22. Bornatico R, Pfeiffer M, Witzig A, Guzzella L (2012) Optimal sizing of a solar thermal building installation using particle swarm optimization. Energy 41:31–37. https://doi.org/10.1016/j.energy.2011.05.026

    Article  Google Scholar 

  23. Araya R, Bustos F, Contreras J, Fuentes A (2017) Life-cycle savings for a flat-plate solar water collector plant in Chile. Renew Energy 112:365–377. https://doi.org/10.1016/j.renene.2017.05.036

    Article  Google Scholar 

  24. Ko MJ (2015) Analysis and optimization design of a solar water heating system based on life cycle cost using a genetic algorithm. Energies 8:11380–11403. https://doi.org/10.3390/en81011380

    Article  Google Scholar 

  25. Cheng Hin JN, Zmeureanu R (2014) Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed. Sol Energy 100:102–113. https://doi.org/10.1016/j.solener.2013.12.001

    Article  Google Scholar 

  26. Yaman K, Arslan G (2018) Modeling, simulation, and optimization of a solar water heating system in different climate regions. J Renew Sustain Energy 10:023703. https://doi.org/10.1063/1.5004069

    Article  Google Scholar 

  27. Kusyy O, Kuethe S, Vajen K (2010) Simulation-based optimization of a solar water heating system by a hybrid genetic-binary search algorithm. In: 2010 XVth international seminar/workshop on direct and inverse problems of electromagnetic and acoustic wave theory (DIPED), pp 201–206

  28. Hajabdollahi Z, Hajabdollahi H (2017) Thermo-economic modeling and multi-objective optimization of solar water heater using flat plate collectors. Sol Energy 155:191–202. https://doi.org/10.1016/j.solener.2017.06.023

    Article  Google Scholar 

  29. Hajabdollahi F, Premnath K (2017) Numerical study of the effect of nanoparticles on thermoeconomic improvement of a solar flat plate collector. Appl Therm Eng 127:390–401. https://doi.org/10.1016/j.applthermaleng.2017.08.058

    Article  Google Scholar 

  30. Hajabdollahi H (2018) Investigating the effect of nanofluid on optimal design of solar flat plate collector. In: 2018 5th international conference on renewable energy: generation and applications (ICREGA), pp 188–191

  31. Hajabdollahi Z, Hajabdollahi H, Kim KC (2019) Multi-objective optimization of solar collector using water-based nanofluids with different types of nanoparticles. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08444-w

    Article  Google Scholar 

  32. Gonçalves MS, Lopez RH, Miguel LFF (2015) Search group algorithm: a new metaheuristic method for the optimization of truss structures. Comput Struct 153:165–184. https://doi.org/10.1016/j.compstruc.2015.03.003

    Article  Google Scholar 

  33. Pedro RL, Demarche J, Miguel LFF, Lopez RH (2017) An efficient approach for the optimization of simply supported steel-concrete composite I-girder bridges. Adv Eng Softw 112:31–45. https://doi.org/10.1016/j.advengsoft.2017.06.009

    Article  Google Scholar 

  34. Carraro F, Lopez RH, Miguel LFF (2017) Optimum design of planar steel frames using the search group algorithm. J Braz Soc Mech Sci Eng 39:1405–1418. https://doi.org/10.1007/s40430-016-0628-1

    Article  Google Scholar 

  35. Noorbin SFH, Alfi A (2018) Adaptive parameter control of search group algorithm using fuzzy logic applied to networked control systems. Soft Comput 22:7939–7960. https://doi.org/10.1007/s00500-017-2742-0

    Article  Google Scholar 

  36. Khamari D, Sahu RK, Panda S (2019) Application of search group algorithm for automatic generation control of interconnected power system. In: Behera HS, Nayak J, Naik B, Abraham A (eds) Computational intelligence in data mining. Springer, Singapore, pp 557–568

    Chapter  Google Scholar 

  37. Khamari D, Sahu RK, Panda S (2019) Application of search group algorithm for automatic generation control of multi-area multi-source power systems. E3S Web Conf 87:01005. https://doi.org/10.1051/e3sconf/20198701005

    Article  Google Scholar 

  38. Acampora G, Caruso D, Vaccaro A, Vitiello A (2016) A search group algorithm for optimal voltage regulation in power systems. In: 2016 IEEE congress on evolutionary computation (CEC), pp 3662–3669

  39. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm for solving multi-objective optimization problems. Soft Comput 19:2587–2603. https://doi.org/10.1007/s00500-014-1424-4

    Article  Google Scholar 

  40. Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298. https://doi.org/10.1016/j.asoc.2014.10.042

    Article  Google Scholar 

  41. Mirjalili S, Saremi S, Mirjalili SM, dos Coelho LS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  42. Tran D-H, Cheng M-Y, Prayogo D (2016) A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowl Based Syst 94:132–145. https://doi.org/10.1016/j.knosys.2015.11.016

    Article  Google Scholar 

  43. Mirjalili S, Jangir P, Mirjalili SZ et al (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134:50–71. https://doi.org/10.1016/j.knosys.2017.07.018

    Article  Google Scholar 

  44. Foroughi Nematollahi A, Rahiminejad A, Vahidi B (2019) A novel multi-objective optimization algorithm based on lightning attachment procedure optimization algorithm. Appl Soft Comput 75:404–427. https://doi.org/10.1016/j.asoc.2018.11.032

    Article  Google Scholar 

  45. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  46. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295. https://doi.org/10.1016/j.pecs.2004.02.001

    Article  Google Scholar 

  47. Agarwal VK, Larson DC (1981) Calculation of the top loss coefficient of a flat-plate collector. Sol Energy 27:69–71. https://doi.org/10.1016/0038-092X(81)90022-0

    Article  Google Scholar 

  48. Mahian O, Kianifar A, Sahin AZ, Wongwises S (2015) Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. J Heat Transf. https://doi.org/10.1115/1.4029870

    Article  Google Scholar 

  49. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  50. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  51. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043. https://doi.org/10.1002/aic.690490420

    Article  Google Scholar 

  52. Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct 35:543–557. https://doi.org/10.1016/j.spmi.2003.09.012

    Article  Google Scholar 

  53. Taal M, Bulatov I, Klemeš J, Stehlík P (2003) Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl Therm Eng 23:1819–1835. https://doi.org/10.1016/S1359-4311(03)00136-4

    Article  Google Scholar 

  54. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  55. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston

    MATH  Google Scholar 

  56. Coello CAC, Lamont GB, Veldhuizen DAV (2006) Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  57. Veldhuizen DAV, Lamont GB (1998) Evolutionary computation and convergence to a Pareto front. Late breaking papers at the genetic programming 1998 conference. Stanford University Bookstore, Stanford, pp 221–228

    Google Scholar 

  58. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Thesis, Massachusetts Institute of Technology

  59. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  60. Deb K, Kalyanmoy D (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  61. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature—PPSN V. Springer, Berlin, pp 292–301

  62. Tran D-H, Luong-Duc L, Duong M-T et al (2018) Opposition multiple objective symbiotic organisms search (OMOSOS) for time, cost, quality and work continuity tradeoff in repetitive projects. J Comput Des Eng 5:160–172. https://doi.org/10.1016/j.jcde.2017.11.008

    Article  Google Scholar 

  63. Sheng W, Liu K-Y, Liu Y et al (2015) Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm II. IEEE Trans Power Deliv 30:569–578. https://doi.org/10.1109/TPWRD.2014.2325938

    Article  Google Scholar 

  64. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8:173–195. https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  65. Schaffer JD (1984) Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition). Phd, Vanderbilt University

  66. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3:1–16. https://doi.org/10.1162/evco.1995.3.1.1

    Article  Google Scholar 

  67. Poloni C, Giurgevich A, Onesti L, Pediroda V (2000) Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Comput Methods Appl Mech Eng 186:403–420. https://doi.org/10.1016/S0045-7825(99)00394-1

    Article  MATH  Google Scholar 

  68. Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Schwefel H-P, Männer R (eds) Parallel problem solving from nature. Springer, Berlin, Heidelberg, pp 193–197

    Chapter  Google Scholar 

  69. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  70. Flat plate panels. In: Kingspan|USA. https://www.kingspan.com/us/en-us/product-groups/renewable-technologies/solar-thermal/solar-flat-plate-panels/flat-plate-panels. Accessed 6 Nov 2019

Download references

Acknowledgements

This research is sponsored by YUTP–FRG and Graduate Research Assistantship (GRA) Scheme of Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieu Ngoc Vo.

Ethics declarations

Conflict of interest

Our paper has no conflicts of interest with any other individuals or parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, BH., Nallagownden, P., Truong, K.H. et al. Multi-objective search group algorithm for thermo-economic optimization of flat-plate solar collector. Neural Comput & Applic 33, 12661–12687 (2021). https://doi.org/10.1007/s00521-021-05915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05915-w

Keywords

Navigation