Skip to main content
Log in

Oxidation Kinetics of Impurities in Metallurgical-Grade Silicon Melt by O2 Blowing Refining Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxygen blowing refining is an effective method for the removal of the main Al and Ca metallic impurities from metallurgical-grade silicon (MG-Si). However, the removal of impurities in silicon melt is affected and restricted by the kinetics of the refining process. In this work, the oxidation mechanism and kinetics of impurity removal from silicon melt by oxygen blowing refining were investigated experimentally. The limiting step of the impurity removal is the diffusion of impurities in the Si melt. The kinetic model and equation related to the apparent rate constant and the mass transfer coefficient of impurity were established. Examination of the distribution and morphology of the impurities at the slag-silicon interface showed that oxygen blowing refining can achieve a strong impurity removal effect and obtain high-quality MG-Si. Based on the experimental results for impurity Al removal, the apparent rate constant (kAl) and the mass transfer coefficient (βAl) were obtained as 3.83×10−4 s−1 and 1.04×10−5 m s−1, respectively, while the silicon loss rate reaches 5.24 pct for 90 minutes of oxygen blowing refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.L. Gong, C. Li, M.R. Wasielewski, Chem. Soc. Rev. 23, 1862–1864 (2019)

    Article  Google Scholar 

  2. A.M. Mitrasinovi, T.A. Utigard, Silicon 1, 239–248 (2010)

    Article  Google Scholar 

  3. Z. Ding, W.H. Ma, K.X. Wei, J.J. Wu, B. Yang, Y.N. Dai, J. Vac. Sci. Technol. 33, 185–191 (2013)

    CAS  Google Scholar 

  4. T.L. Chu, G.A. van der Leeden, H.I. Yoo, J. Electrochem. Soc. 125, 661–665 (1978)

    Article  CAS  Google Scholar 

  5. J.J. Wu, Y.N. Dai, W.H. Ma, B. Yang, D.C. Liu, Y. Wang, K.X. Wei, J. Vac. Sci. Technol. 30, 43–49 (2010)

    Google Scholar 

  6. Z.L. Yu, W.H. Ma, Y.N. Dai, B. Yang, D.C. Liu, W.P. Dai, J.X. Wang, Trans. Nonferr. Met. Soc. China 17, 1030–1033 (2007)

    Google Scholar 

  7. X.G. Wang, W.Z. Ding, H. Shen, J.J. Zhang, Chin. J. Nonferr. Met. 12, 827–831 (2002)

    CAS  Google Scholar 

  8. J.J. Wu, W.H. Ma, Y.L. Li, B. Yang, D.C. Liu, Y.N. Dai, Trans. Nonferr. Met. Soc. China 23, 260–265 (2013)

    Article  CAS  Google Scholar 

  9. Z.Y. Chen, K. Morita, Metall. Mater. Trans. B 49B, 1205–1212 (2018)

    Article  Google Scholar 

  10. M.S. Islam, M.A. Rhamdhani, Metall. Mater. Trans. B 49B, 3171–3185 (2018)

    Article  Google Scholar 

  11. Y.L. Li, J.J. Wu, W.H. Ma, Sep. Sci. Technol. 49, 1946–1952 (2014)

    Article  CAS  Google Scholar 

  12. K. Suzuki, T. Kumagai, N. Sano, ISIJ Int. 32, 630–634 (1992)

    Article  CAS  Google Scholar 

  13. E.F. Nordstrand, M. Tangstad, Metall. Mater. Trans. B 43B, 814–822 (2012)

    Article  Google Scholar 

  14. T. Ikeda, M. Maeda, Mater. Trans. JIM 37, 983–987 (2007)

    Article  Google Scholar 

  15. M.K. Næss, D.J. Young, J.Q. Zhang, J.E. Olsen, G. Tranell, Oxid. Met. 78, 363–376 (2012)

    Article  Google Scholar 

  16. M.K. Næss, J.E. Olsen, S. Andersson, G. Tranell, Oxid. Met. 82, 395–413 (2014)

    Article  Google Scholar 

  17. J.F. White, D. Sichen, Metall. Mater. Trans. B 45B, 96–105 (2014)

    Article  Google Scholar 

  18. J.J. Wu, Y.L. Li, W.H. Ma, K. Liu, K.X. Wei, K.Q. Xie, B. Yang, Y.N. Dai, Silicon 6, 79–85 (2014)

    Article  CAS  Google Scholar 

  19. Ø.S. Sortland, M. Tangstad, Metall. Mater. Trans. E 1E, 211–225 (2014)

    Google Scholar 

  20. R. Pretorius, Vacuum 41, 1038–1042 (1990)

    Article  CAS  Google Scholar 

  21. E. Gaffet, N. Malhouroux, M. Abdellaoui, J. Alloy Compd. 194, 339–360 (1993)

    Article  CAS  Google Scholar 

  22. S. Li, X.C. Deng, C. Zhang, J.H. Wen, J.J. Wu, K.X. Wei, W.H. Ma, J. Alloy Compd. 831, 154888 (2020)

    Article  CAS  Google Scholar 

  23. J.J. Wu, K. Liu, M. Xu, W.H. Ma, B. Yang, Y.N. Dai, J. Min. Metall. B 50, 83–86 (2014)

    Article  CAS  Google Scholar 

  24. C. Alemanya, C. Trassy, B. Pateyronc, K.I. Li, Y. Delannoy, Sol. Energy Mater. Sol. Cells 72, 41–48 (2002)

    Article  Google Scholar 

  25. K. Mukai, Z.F. Yuan, Mater. Trans. JIM 41, 323–330 (2000)

    Article  CAS  Google Scholar 

  26. K. Suzuki, K. Sakaguchi, T. Nakagiri, N. Sano, J. Jpn. Inst. Met. 54, 161–167 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support on this research from the National Natural Science Foundation of China (22078140 and U1902219), the Talent Training Program of Yunnan of China (202005AC160041), and the Major R&D Project of Yunnan of China (2019ZE00701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Wu or Kuixian Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 2, 2020; accepted December 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, N., Yang, D., Xu, M. et al. Oxidation Kinetics of Impurities in Metallurgical-Grade Silicon Melt by O2 Blowing Refining Process. Metall Mater Trans B 52, 1830–1838 (2021). https://doi.org/10.1007/s11663-021-02149-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02149-y

Navigation