Skip to main content
Log in

Soil Properties and Soil Organic Carbon Stock Changes Resulted from Deforestation in a Semi-arid Region of Zagros Forests, Iran

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

Today, population growth and demand for agricultural production have resulted in the significant damage to the natural ecosystem, including forests and rangelands, and have turned them into farmlands. Territorial land use changes can result in changes in chemical and physical features of soils, which in turn, may ultimately lead to land degradation. Understanding the effects of land use changes on soil features is very important as it helps with assessing the sustainability of natural ecosystems. Therefore, in the current study, we sought to compare changes in soil physico-chemical properties, soil deterioration index (SDI), soil erodibility factor (K factor) and the soil organic carbon (SOC) stock in three types of land use, namely: protected forest (PF), natural forest (NF) with common exploitation (overgrazing and fuel wood) and cultivated land (CL) in semi-arid regions in western Iran. Soil samples were randomly collected from 0–30 cm depths (16 + 18 + 18 at each land use, respectively; 52 samples in total). The soil texture, pH, exchangeable K, available P, total N, soil organic carbon and SOC stock were measured in soil samples. The findings indicated that in general, overgrazing with the exploitation of trees in the NF and changing the NF to CL caused a significant increase in sand (by 22.3–90.5%) and bulk density (6.1–9.16%) and a significant decrease in silt (4.34–13.56%), clay (2.36–13.5%) exchangeable K (37.68–50.63%), available P (15.58–27.42%), total N (22.2–55.5%), soil organic carbon (22.3–52.4%) and SOC stock (22.87–52.3%) (P < 0.01). The outcomes of multivariate analysis (RDA) indicated that CL correlated with sand, pH and bulk density, and EF correlated with most soil properties. The outcomes of SDI were indicative of a significant reduction in quality of soil (-5.5%) under CL, compared with NF (–21.5%) and EF (0.1%). The highest value of soil erodibility factor (K factor) was observed in the CL (0.260), and the lowest was at the PF (0.214). In general, the findings of this study showed that the exploitation of trees for fuel wood with overgrazing in the NF and after transformation of the NF to the CL caused a significant deterioration in the soil properties in the semi-arid region in western Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abril, A., Barttfelda, P., and Bucherb, E.H., The effect of fire and overgrazing disturbs on soil carbon balance in the Dry Chaco forest, For. Ecol. Manage., 2005, vol. 206, pp. 399–405.

    Article  Google Scholar 

  2. Basaran, M., Erpul, G., Tercan, A.E., and Anga, C.M.R., The effects of land use changes on some soil properties in Indagı Mountain Pass Cankırı, Turkey, Environ., Monit. Assess., 2008, vol. 136, pp. 101–119.

    Article  CAS  Google Scholar 

  3. Bewketa, W. and Stroosnijder, L., Effects of agro ecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia, Geoderma, 2003, vol. 111, pp. 85–98.

    Article  Google Scholar 

  4. Borumand, M.G., Hajarsepanlu, M., and Bahmanyar, A., The effect of land use change on some of the physical and chemical properties of soil (case study: Semeskande Area of Sari), J. Watershed Manage. Res., 2014, vol. 5, no. 9, pp. 78–94.

    Google Scholar 

  5. Celik, I., Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey, Soil Tillage Res., 2005, vol. 83, pp. 270–277.

    Article  Google Scholar 

  6. Chen, X. and Duan, Z., Changes in soil physical and chemical properties during reversal of desertification in Yanchi County of Ningxia Hui Autonomous region, China, Environ. Geol., 2009, vol. 57, pp. 975–985.

    Article  Google Scholar 

  7. Chibsa, T. and Taa, A., Assessment of soil organic matter under four land use systems in Bale Highlands, Southeast Ethiopia. A. Soil organic matter contents in four land use systems: forestland, grassland, fallow land and cultivated land, World Appl. Sci. J., 2009, vol. 6, no. 9, pp. 1231–1246.

    CAS  Google Scholar 

  8. Costa, C., Papatheodorou, E.M., Monokrousos, N., and Stamou, G.P., Spatial variability of soil organic C, inorganic N and extractable P in a Mediterranean grazed area, Land Degrad. Dev., 2015, vol. 26, pp. 103–109.

    Article  Google Scholar 

  9. Cotching, W.E. and Kidd, D.B., Soil quality evaluation and the interaction with land use and soil order in Tasmania, Australia, Agric., Ecosyst. Environ., 2010, vol. 137, pp. 358–366.

    Article  Google Scholar 

  10. Dakhah, M. and Gifford, G.F., Influence of vegetation, rock cover and trampling on infiltration rates and sediment production, J. Am. Water Resour. Assoc., 1980, vol. 16, no. 6, pp. 979–986.

    Article  Google Scholar 

  11. Doran, J.W., Soil health and global sustainability, translating science into practice, Agric. Ecosyst. Environ., 2002, vol. 88, pp. 119–127.

    Article  Google Scholar 

  12. Edmondson, J.L., Davies, Z.G., McCormack, S.A., Gaston, K.J., and Leake, J.R., Land cover effects on soil organic carbon stocks in an European city, Sci. Total Environ., 2014, vol. 472, pp. 444–453.

    Article  CAS  PubMed  Google Scholar 

  13. Fleischner, T.L., Ecological costs of livestock grazing in western North America, Conserv. Biol., 1994, vol. 8, no. 3, pp. 629–644.

    Article  Google Scholar 

  14. Gillson, L. and Hoffman, M.T., Rangeland ecology in a changing world, Science, 2007, vol. 315, pp. 53–54.

    Article  CAS  PubMed  Google Scholar 

  15. Ghazanfari, H., Namiranian, M., Sobhan, H., and Mohajer, R.M., Traditional forest management and its application to encourage public participation for sustainable forest management in the northern Zagros mountain of Kurdistan province, Iran, Scand. J. For. Sci., 2004, vol. 19, no. 4, pp. 65–71.

    Google Scholar 

  16. Graham, R.C. and O’Geen, A.T., Soil mineralogy trends in California landscapes, Geoderma, 2010, vol. 154, pp. 418–437.

    Article  CAS  Google Scholar 

  17. Hajabbasi, M.A., Jalalian, A., and Karimzadeh, H.R., Deforestation effects on soil physical and chemical properties, Lordegan, Iran, Plant Soil, 1997, vol. 190, pp. 301–308.

    Article  CAS  Google Scholar 

  18. Hill, M.J., Braaten, R., and Mckeon, G.M., A scenario calculator for effect of grazing land management on carbon stocks in Australian rangelands, J. Environ. Model. Software, 2003, vol. 7, no. 18, pp. 627–644.

    Article  Google Scholar 

  19. Islam, K.R. and Weil, R.R., Land use effects on soil quality in a tropical forest ecosystem of Bangladesh, Agric., Ecosyst. Environ., 2000, vol. 79, pp. 9–16.

    Article  Google Scholar 

  20. Izquierdo, A.E. and Grau, R.H., Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina, J. Environ. Manage., 2009, vol. 90, pp. 858–865.

    Article  PubMed  Google Scholar 

  21. Jazirehi, M.H. and Rostaghi, E.M., Silviculture in Zagros, Tehran: Univ. of Tehran Press, 2003.

    Google Scholar 

  22. Jeddi, K. and Chaieb, M., Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia, J. Flora, 2010, vol. 205, pp. 184–189.

    Article  Google Scholar 

  23. Kavian, A., Azmoodeh, A., and Solaimani, K., Deforestation effects on soil properties, runoff and erosion in northern Iran, Arab. J. Geosci., 2014, vol. 7, pp. 1941–1950.

    Article  CAS  Google Scholar 

  24. Khresat, S., Al-Bakri, J., and Al-Tahhan, R., Impact of land use/cover change on soil properties in the Mediterranean region of Northwestern Jordan, Land Degrad. Dev., 2008, vol. 19, pp. 397–407.

    Article  Google Scholar 

  25. Lal, R., Soil carbon sequestration impact on global climate change and food security, Science, 2004, vol. 304, pp. 1623–1627.

    Article  CAS  Google Scholar 

  26. Lemenih, M., Olsson, M., and Karltun, E., Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia, For. Ecol. Manage., 2004, vol. 195, pp. 57–67.

    Article  Google Scholar 

  27. Leps, J. and Smilauer, P., Multivariate Analysis of Ecological Data using CANOCO, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  28. Le Quere, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., and Ciais, P., Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2009, vol. 2, pp. 831–836.

    Article  CAS  Google Scholar 

  29. Li, Q., Zhou, D., Jin, Y., Wang, M., Song, Y., and Li, G., Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China, J. Arid Land, 2014, vol. 6, no. 4, pp. 478–487.

    Article  Google Scholar 

  30. Liu, M.Y., Chang, Q.R., Qi, Y.B., Liu, J., and Chen, T., Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China, Catena, 2014, vol. 115, pp. 19–28.

    Article  CAS  Google Scholar 

  31. MacDicken, K.G., A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects, Little Rock, AR: Winrock Int. Inst. Agric. Dev., 1997.

    Google Scholar 

  32. Manzano, M.G. and Navar, J., Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in north-eastern Mexico, J. Arid Environ., 2000, vol. 44, no. 1, pp. 1–17.

    Article  Google Scholar 

  33. Martinez-Mena, M., Lopez, J., Almagro, M., Boix-Fayos, V., and Albaladejo, J., Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of south-east Spain, Soil Tillage Res., 2008, vol. 99, pp. 119–129.

    Article  Google Scholar 

  34. Marvie-Mohadjer, M.M.R., Silviculture, Tehran: Univ. of Tehran Press, 2005.

    Google Scholar 

  35. Materechera, S.A., Influence of agricultural land use and management practices on selected soil properties of a semi-arid savanna environment in South Africa, J. Arid Environ., 2014, vol. 102, pp. 98–103.

    Article  Google Scholar 

  36. Meng, Q., Fu, B., Tang, X., and Ren, H., Effect of land use on phosphorus loss in the hilly area of the Loess Plateau, China, Environ. Monit. Assess., 2008, vol. 139, pp. 195–204.

    Article  CAS  PubMed  Google Scholar 

  37. Murty, D., Kirschbaum, M.F., Mcmurtrie, R.E., and Mcgilvray, H., Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature, Global Change Biol., 2002, vol. 8, pp. 105–123.

    Article  Google Scholar 

  38. Navidi, M.N., Sarmadian, F., and Mahmoodi, Sh., Studying the effects of land use change on soil physical and chemical quality indicators of surface horizons in rangelands of eastern Qazvin province, J. Range Watershed Manage., 2009, vol. 62, no. 2, pp. 299–310.

    Google Scholar 

  39. Gharmakher, N.H. and Maramaei, M., Effects of land use changes on soil properties (case study: the Kechik catchment), J. Soil Manage. Sustainable, 2011, vol. 1, no. 2, pp. 81–96.

    Google Scholar 

  40. Olsen, S.R. and Sommers, L.E., Phosphorus, in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Page, A.L., Ed., Madison, WI: Am. Soc. Agron., Soil Sci. Soc. Am., 1982, pp. 403–430.

  41. Otto, R., Krusi, B.O., and Kienast, F., Degradation of an arid coastal landscape in relation to land use change in Southern Tenerife (Canary Island), J. Arid Environ., 2007, vol. 70, pp. 527–539.

    Article  Google Scholar 

  42. Page, A.L., Methods of Soil Analysis, Madison, WI: Am. Soc. Agron., Soil Sci. Soc. Am., 1992.

    Google Scholar 

  43. Pei, S.F., Fu, H., and Wan, C.G., Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China, Agric., Ecosyst. Environ., 2008, vol. 124, no. 1, pp. 33–39.

    Article  Google Scholar 

  44. Piñeiro, G., Paruelo, J.M., and Oesterheld, M., Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America, Global Change Biol., 2006, vol. 12, pp. 1267–1284.

    Article  Google Scholar 

  45. Rezapour, S., Response of some soil attributes to different land use types in calcareous soils with Mediterranean type climate in north-west of Iran, Environ. Earth Sci., 2014, vol. 71, pp. 2199–2210.

    Article  CAS  Google Scholar 

  46. Rubio, R.W. and Bochet, E., Desertification indicators as diagnosis criteria for desertification risk assessment in Europe, J. Arid Environ., 1998, vol. 39, no. 2, pp. 113–120.

    Article  Google Scholar 

  47. Sadegh, H.R., Vangah, G.B., and Safaian, N., Comparison between effects of open grazing and manual harvesting of cultivated summer rangelands of Northern Iran on infiltration, runoff and sediment yield, Land Degrad. Dev., 2007, vol. 18, pp. 608–620.

    Article  Google Scholar 

  48. Sagheb-Talebi, K.H., Sajedi, T., and Yazdian, F., Forests of Iran: Technical Publication No. 339, Tehran: Res. Inst. For. Rangelands, 2004.

  49. Salardini, A.A., Soil Fertility, Tehran: Univ. of Tehran Press, 1995.

    Google Scholar 

  50. Salehi, A., Livelihood dependency and management on semiarid oak forests (the case of southern Zagros, Iran), PhD Thesis, Uppsala: Swed. Univ. Agric. Sci., 2009, p. 21.

  51. Schneider, L.C. and Pontius, R.G., Modeling land-use change in the Ipswich watershed, Massachusetts, USA, Agric. Ecosyst. Environ., 2001, vol. 85, pp. 83–94.

    Article  Google Scholar 

  52. Shrestha, G. and Stahla, P.D., Carbon accumulation and storage in semi-arid sagebrush steppe: effects of long-term grazing exclusion, Agric. Ecosyst. Environ., 2008, vol. 125, pp. 173–181.

    Article  CAS  Google Scholar 

  53. Singh, R.S., Tripathi, N., and Singh, S.K., Impact of degradation on nitrogen transformation in a forest ecosystem of India, Environ. Monit. Assess., 2007, vol. 125, pp. 165–173.

    Article  CAS  PubMed  Google Scholar 

  54. Stolt, M.H., Baker, J.C., and Simpson, T.W., Soil-landscape relationships in Virginia: II. Reconstruction analysis and soil genesis, Soil Sci. Am. J., 1993, vol. 57, pp. 422–428.

    Article  CAS  Google Scholar 

  55. Su, Y.Z., Li, Y.L., and Cui, J.Y., Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China, Catena, 2005, vol. 59, no. 3, pp. 267–278.

    Article  Google Scholar 

  56. Tate, K.R., Ross, D.J., Saggar, S., Hedley, C.B., Dando, J., Singh, B.K., and Lambie, S.M., Methane uptake in soils from Pinus radiata plantations, a reverting shrub land and adjacent pastures: effects of land use change, and soil texture, water and mineral nitrogen, Soil Biol. Biochem., 2007, vol. 39, pp. 1437–1449.

    Article  CAS  Google Scholar 

  57. Thomas, G.W., Exchangeable cations, in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Page, A.L., Miller, R.H., and Keeney, D.R., Eds., Madison, WI: Am. Soc. Agron., Soil Sci. Soc. Am., 1982, pp. 159–166.

  58. Tilman, D., Fargione, J., Wolff, B., d’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W., Simberloff, D., and Swackhamer, D., Forecasting agriculturally driven environmental change, Science, 2001, vol. 292, pp. 281–284.

    Article  CAS  PubMed  Google Scholar 

  59. UNEP 1993-94: Environmental data report, in TERI Report No. 97/ED/52, New Delhi, 1997.

  60. van Veen, J.A. and Kuikman, P.J., Soil structure aspects of decomposition of organic matter by microorganisms, Biochemistry, 1990, vol. 11, pp. 213–233.

    CAS  Google Scholar 

  61. Wang, S., Wilkes, A., Zhang, Z., Chang, X., Lang, R., Wang, Y., and Niu, H., Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis, Agric., Ecosyst. Environ., 2011, vol. 142, pp. 329–340.

    Article  Google Scholar 

  62. Wang, H., Guan, D., Zhang, R., Chen, Y., Hu, Y., and Xiao, L., Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field, Ecol. Eng., 2014, vol. 70, pp. 206–211.

    Article  Google Scholar 

  63. Wischmeier, W.H. and Smith, B.D., Prediction Rainfall Erosion Losses: A Guide for Conservation Planning Agriculture, Agriculture Handbook no. 537, Washington, DC: US Dep. Agric., 1978.

  64. Wu, G.L., Du, G.Z., Liu, Z.H., and Thirgood, S., Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau, Plant Soil, 2009, vol. 319, nos. 1–2, pp. 115–126.

    Article  CAS  Google Scholar 

  65. Yang, J., Liu, J., Hu, X., Li, X., Wang, Y., and Li, H., Changes of soil organic carbon, nitrogen and phosphorus concentrations under different land uses in marshes of Sanjiang Plain, Acta Ecol. Sin., 2013, vol. 33, pp. 332–337.

    Article  Google Scholar 

  66. Yousefifard, M., Khademi, H., and Jalalian, A., Decline in soil quality as a result of land use change in Cheshmeh Ali region, Chaharmahal Bakhtiari Province, J. Agric. Sci. Nat. Resour., 2007, vol. 14, no. 1, pp. 28–38.

    Google Scholar 

  67. Yuksek, T., Kurdoglu, O., and Yuksek, F., The effects of land use changes and management types on surface soil properties in Kafkasor protected area in Artvin, Turkey, Land Degrad. Dev., 2010, vol. 21, pp. 582–590.

    Article  Google Scholar 

  68. Zahedi, G.H., Relation between Vegetation and Characteristics in a Mixed Hard Wood Stand, Ghent: Ghent Univ., 1998.

    Google Scholar 

  69. Zhao, W.Z., Xiao, H.L., Liu, Z.M., and Li, J., Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China, Catena, 2005, vol. 59, pp. 173–186.

    Article  CAS  Google Scholar 

  70. Zhao, Y., Xu, X., Darilek, J.L., Huang, B., Sun, W., and Shi, X., Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region China, Environ. Geol., 2009, vol. 57, pp. 1089–1102.

    Article  CAS  Google Scholar 

  71. Zucca, C., Canu, A., and Previtali, F., Soil degradation by land use change in an agro pastoral area in Sardinia (Italy), Catena, 2010, vol. 83, pp. 46–54.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to extend their deepest gratitude to the Iranian University of Yasouj for the financial support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Jarideh, S. Alvaninezhad, P. Gholami, M. R. Mirzaei or M. Armin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarideh, S., Alvaninezhad, S., Gholami, P. et al. Soil Properties and Soil Organic Carbon Stock Changes Resulted from Deforestation in a Semi-arid Region of Zagros Forests, Iran. Arid Ecosyst 11, 18–26 (2021). https://doi.org/10.1134/S2079096121010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096121010078

Keywords:

Navigation