Skip to main content
Log in

Effects of Water Addition on the Conversion of o-Cresol in the Presence of In Situ Ni–Mo Sulfide Catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Ni-Mo sulfide systems generated in situ from precursor salts were used for the hydrodeoxygenation of o-cresol. After the reaction, the catalysts were recovered and analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy. It was shown that the addition of water into the reaction system affects the composition of the o-cresol conversion product due to a change in the texture and phase composition of the surface layer of the in situ sulfide particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alper, K., Tekin, K., Karagöz, S., and Ragauskas, A.J., Sustain. Energy Fuels, 2020, vol. 4, pp. 4390–4414. https://doi.org/10.1039/D0SE00784F

    Article  CAS  Google Scholar 

  2. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev., 2006, vol. 106, pp. 4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  3. He, Z. and Wang, X., Catal. Sustainable Energy, 2013, vol. 1, pp. 28–52. https://doi.org/10.2478/cse-2012-0004

    Article  CAS  Google Scholar 

  4. Mohan, D., Pittman, C.U.Jr., and Steele, P.H., Energy Fuels, 2006, vol. 20(3), pp. 848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  5. Ouedraogo, A.S. and Bhoi, P.R., J. Cleaner Prod., 2020, vol. 253. ID 119957. https://doi.org/10.1016/j.jclepro.2020.119957

  6. Yoosuk, B., Tumnantong, D., and Prasassarakich, P., Chem. Eng. Sci., 2012, vol. 79, pp. 1–7. https://doi.org/10.1016/j.ces.2012.05.020

    Article  CAS  Google Scholar 

  7. Echeandia, S., Arias, P., Barrio, V., Pawelec, B., and Fierro, J.L.G., Appl. Catal. B, 2010, vol. 101, pp. 1–12. https://doi.org/10.1016/j.apcatb.2010.08.018

    Article  CAS  Google Scholar 

  8. Zhang, Y., Monnier, J., and Ikura, M., Fuel Process. Technol., 2020, vol. 206, pp. 2372–2377. https://doi.org/10.1016/j.fuproc.2020.106403

    Article  CAS  Google Scholar 

  9. Yoosuk, B., Tumnantong, D., and Prasassarakich, P., Fuel, 2012, vol. 91(1), pp. 246–252. https://doi.org/10.1016/j.fuel.2011.08.001

    Article  CAS  Google Scholar 

  10. Alkhaldi, S. and Husein, M., Energy Fuels, 2014, vol. 28(1), pp. 643–649. https://doi.org/10.1021/ef401751s

    Article  CAS  Google Scholar 

  11. Khadzhiev, S.N., Kadiev, K.M., and Kadieva, M.K., Petrol. Chem., 2014, vol. 54, pp. 323–346. https://doi.org/10.1134/S0965544114050065

    Article  CAS  Google Scholar 

  12. Si, Z., Zhang, X., Wang, C., Ma, L., and Dong, R., Catalysts, 2017, vol. 7. ID 169. https://doi.org/10.3390/catal7060169

  13. Vutolkina, A.V., Glotov, A.P., Baygildin, I.G., Akopyan, A.A., Talanova, M.Yu., Terenina, M.В., Maximov, A.L., and Karakhanov, E.A., Pure Appl. Chem., 2020, vol. 92(6). Р. 949–966. https://doi.org/10.1515/pac-2019-1115

  14. Vutolkina, A.V., Glotov, A.P., Zanina, A.V., Makhmutov, D.F., Maximov, A.L., Egazar’yants, S.V., and Karakhanov, E.A., Catal. Today, 2019, vol. 329, pp. 156–166. https://doi.org/10.1016/j.cattod.2018.11.030

    Article  CAS  Google Scholar 

  15. Kasztelan, S., Toulhoat, H., Grimblot, J., and Bonnelle, J.P., Appl. Catal. A, 1984, vol. 13, pp. 127−159. https://doi.org/10.1016/S0166-9834(00)83333-3

    Article  CAS  Google Scholar 

  16. Mullen, C.A. and Boateng, A.A., Energy Fuels, 2008, vol. 22(3), pp. 2104–2109. https://doi.org/10.1021/ef700776w

    Article  CAS  Google Scholar 

  17. Wan, H., Chaudhari, R.V., and Subramaniam, B., Top. Catal., 2012, vol. 55(3–4), pp. 129–139. https://doi.org/10.1007/s11244-012-9782-6

    Article  CAS  Google Scholar 

  18. Whiffen, V.M.L. and Smith, K.J., Energy Fuels, 2010, vol. 24, pp. 4728–4737. https://doi.org/10.1021/ef901270h

    Article  CAS  Google Scholar 

  19. Nie, L., and Resasco, D.E., J. Catal., 2014, vol. 317, pp. 22–29 https://doi.org/10.1016/j.jcat.2014.05.024

    Article  CAS  Google Scholar 

  20. Kumar, A., Kumar, A., Biswas, B., Kumar, J., Yenumala, S.R., and Bhaskar, T., Renewable Energy, 2019, vol. 151, pp. 687–697. https://doi.org/10.1016/j.renene.2019.11.076

    Article  CAS  Google Scholar 

  21. Yang, F., Libretto, N.J., Komarneni, M., Zhou, W., Miller, J.T., Zhu, X., and Resasco, D.E., ACS Catal., 2019, vol. 9(9), pp. 7791–7800. https://doi.org/10.1021/acscatal.9b01285

    Article  CAS  Google Scholar 

  22. Pan, L., He, Y., Niu, M., Dan, Y., and Li, W., RSC Adv., 2019, vol. 9(37), pp. 21175–21185. https://doi.org/10.1039/c9ra02791b

    Article  CAS  Google Scholar 

  23. Laurent, E. and Delmon, B., Ind. Eng. Chem. Res., 1993, vol. 32, pp. 2516–2524. https://doi.org/10.1021/ie00023a013

    Article  CAS  Google Scholar 

  24. Gevert, B.S., Otterstedt, J.E., and Massoth, F.E., Appl. Catal., 1987, vol. 31(1), pp. 119–131. https://doi.org/10.1016/S0166-9834(00)80671-5

    Article  CAS  Google Scholar 

  25. Odebunmi, E.O. and Ollis, D.F., J. Catal., 1983, vol. 80, pp. 56–64. https://doi.org/10.1016/0021-9517(83)90229-4

    Article  CAS  Google Scholar 

  26. Girgis, M.J. and Gates, B.C., Ind. Eng. Chem. Res., 1991, vol. 30(9), pp. 2021–2058. https://doi.org/10.1021/ie00057a001

    Article  CAS  Google Scholar 

  27. Blomberg, S., Johansson, N., Kokkonen, E., Rissler, J., Kollberg, L., Preger, C., Franzén, S.M., Messing, M.E., and Hulteberg, C., Catal. Mat., 2019, vol. 12(22). ID 3727. https://doi.org/10.3390/ma12223727

  28. Gamal, M.S., Asikin-Mijan, N., Khalit, W.N.A.W., Arumugam, M., Izham, S.M., and Taufiq-Yap, Y.H., Fuel Process. Technol., 2020, vol. 208. ID 106519. https://doi.org/10.1016/j.fuproc.2020.106519

  29. Vlasova, E.N., Bukhtiyarova, G.A., Deliy, I.V., Aleksandrov, P.V., Porsin, A.A., Panafidin, M.A., Gerasimov, E.Yu., and Bukhtiyarov, V.I., Catal. Today, 2019, vol. 357, pp. 526–533. https://doi.org/10.1016/j.cattod.2019.06.011

    Article  CAS  Google Scholar 

  30. Deshpande, P., Minfray, C., Dassenoy, F., Le Mogne, T., Jose, D., Cobian, M., and Thiebaut, B., RSC Adv., 2018, vol. 8(27), pp. 15056–15068. https://doi.org/10.1039/c8ra00234g

    Article  CAS  Google Scholar 

  31. Fominski, V., Demin, M., Nevolin, V., Fominski, D., Romanov, R., Gritskevich, M., and Smirnov, N., Nanomaterials, 2020, vol. 10(4). ID 653. https://doi.org/10.3390/nano10040653

  32. Lai, W., Chen, Z., Zhu, J., Yang, L., Zheng, J., Yi, X., and Fang, W., Nanoscale, 2016, vol. 8(6), pp. 3823–3833. https://doi.org/10.1039/c5nr08841k

    Article  CAS  PubMed  Google Scholar 

  33. Topsø, E.H. and Clausen, B.S., Pure Appl. Chem., 1984, vol. 26(3–4), pp. 395–420. https://doi.org/10.1080/01614948408064719

    Article  Google Scholar 

  34. Maximov, A.L., Sizova, I.A., and Khadzhiev, S.N., Pure Appl. Chem., 2017, vol. 89(8), pp. 1145–1155. https://doi.org/10.1515/pac-2016-1202

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Kuchinskaya.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kniazeva, M.I., Kuchinskaya, T.S. & Erasheva, A.S. Effects of Water Addition on the Conversion of o-Cresol in the Presence of In Situ Ni–Mo Sulfide Catalysts. Pet. Chem. 61, 682–687 (2021). https://doi.org/10.1134/S0965544121040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121040034

Keywords:

Navigation