Skip to main content
Log in

A New Investigation on Asphaltene Removal from Crude Oil: Experimental Study in Flow–Loop System Using Maghemite Nanoparticles

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Asphaltene is the heaviest organic compound in crude oils that its precipitation and deposition cause many negative effects on oil production such as an overall decrease in production rate and an increase in operating costs. Nanoparticle technology is a rapidly growing field that may supply an alternative and novel technique for heavy oil upgrading and recovery. As asphaltene depletion by nanoparticles in a system close to reality has not been studied yet, in this work the adsorption process was investigated in a flow–loop system to resemble a real process. To this end, the co-precipitation of ferric and ferrous ions method was applied to synthesis maghemite (γ-Fe2O3) nanoparticles. The synthesized maghemite nanoparticles (MNPs) were applied for the adsorption and removal of asphaltene from crude oil samples in the flow–loop system. The influence of different factors such as contact time, the dose of the nanoparticles, and flow velocity on the adsorption process was investigated. The results of the flow–loop mode experiment indicated that the rate of asphaltene adsorption onto MNPs increases with increasing oil velocity, contact time, and the dose of MNPs. Kinetic experiments were also showed that asphaltene adsorption onto MNPs follows the nonlinear Thomas model and the equilibrium could be achieved in less than 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hoepfner, M.P., Limsakoune, V., Chuenmeechao, V., Maqbool, T., and Fogler, H.S., Energy Fuels, 2013, vol. 27, pp. 725–735. https://doi.org/10.1021/ef3017392

    Article  CAS  Google Scholar 

  2. Zanganeh, P., Ayatollahi, S., Alamdari, A., Zolghadr, A., Dashti, H., and Kord, S., Energy Fuels, 2012, vol. 26, pp. 1412–1419. https://doi.org/10.1021/ef2012744

    Article  CAS  Google Scholar 

  3. Adams, J.J., Schabron, J.F., Rovani, J.F.Jr., van den Berg, F.G., and Mesters, C., Energy Fuels, 2015, vol. 30, pp. 570–583. https://doi.org/10.1021/acs.energyfuels.5b02096

    Article  CAS  Google Scholar 

  4. Aske, N., PhD Thesis, Trondheim, Norwegian University of Science and Technology, 2002.

  5. Zaki, N., Schoriing, P.-C., and Rahimian, I., Pet. Sci. Technol., 2000, vol. 18, pp. 945–963. https://doi.org/10.1080/10916460008949884

    Article  CAS  Google Scholar 

  6. Hashmi, S.M. and Firoozabadi, A., J. Phys. Chem. B, 2010, vol. 114, pp. 15780–15788. https://doi.org/10.1021/jp107548j

    Article  CAS  PubMed  Google Scholar 

  7. Mirzayi, B., Mousavi Dehghani, S.A., and Chakan, M.B., J. Pet. Sci. Technol., 2013, vol. 3, pp. 15–23. https://doi.org/10.22078/jpst.2013.302

    Article  Google Scholar 

  8. Seyyedbagheri, H. and Mirzayi, B., Energy Fuels, 2017, vol. 31, pp. 8061–8071. https://doi.org/10.1021/acs.energyfuels.7b01273

    Article  CAS  Google Scholar 

  9. Hashmi, S.M. and Firoozabadi, A., SPE J., 2016, vol. 21, pp. 1–7. https://doi.org/10.2118/166404-PA

    Article  Google Scholar 

  10. Akbarzadeh, K., Eskin, D., Ratulowski, J., and Taylor, S., Energy Fuels, 2011, vol. 26, pp. 495–510. https://doi.org/10.1021/ef2009474

    Article  CAS  Google Scholar 

  11. Franco, C.A., Nassar, N.N., Ruiz, M.A., PereiraAlmao, P., and Cortés, F.B., Energy Fuels, 2013, vol. 27, pp. 2899–2907. https://doi.org/10.1021/ef4000825

    Article  CAS  Google Scholar 

  12. Mirzayi, B., Vafaie-Sefti, M., Mousavi-Dehghani, S.A., Fasih, M., and Mansoori, G.A., Pet. Sci. Technol., 2008, vol. 26, pp. 231–243. https://doi.org/10.1080/10916460600806143

    Article  CAS  Google Scholar 

  13. Hasanvand, M.Z., Feyzi, F., Behbahani, R.M., and Dehghani, S.A.M., Int. J. Oil Gas Coal Technol., 2018, vol. 19, pp. 458–476. https://doi.org/10.1504/IJOGCT.2016.10015312

    Article  CAS  Google Scholar 

  14. Jafari Behbahani, T., Miranbeigi, A.A., Sharifi, K., and Jafari Behbahani, Z., Petrol. Chem., 2018, vol. 58, pp. 622–629. https://doi.org/10.1134/s0965544118080029

    Article  CAS  Google Scholar 

  15. Madhi, M., Kharrat, R., and Hamoule, T., Petroleum, 2018, vol. 4, pp. 168–177. https://doi.org/10.1016/j.petlm.2017.08.001

    Article  Google Scholar 

  16. Karambeigi, M.A., Nikazar, M., and Kharrat, R., J. Pet. Sci. Eng., 2016, vol. 137, pp. 74–86. https://doi.org/10.1016/j.petrol.2015.11.013

    Article  CAS  Google Scholar 

  17. Mirzayi, B. and Shayan, N.N., J. Pet. Sci. Eng., 2014, vol. 121, pp. 134–141. https://doi.org/10.1016/j.petrol.2014.06.031

    Article  CAS  Google Scholar 

  18. Nassar, N.N., Hassan, A., and Pereira-Almao, P., Energy Fuels, 2011, vol. 25, pp. 1566–1570. https://doi.org/10.1021/ef100458g

    Article  CAS  Google Scholar 

  19. Nassar, N.N., Hassan, A., and Pereira-Almao, P., Colloids Surf. A, 2011, vol. 384, pp. 145–149. https://doi.org/10.1016/j.colsurfa.2011.03.049

    Article  CAS  Google Scholar 

  20. Haindade, Z.M.W., Bihani, A.D., Javeri, S.M., and Jere, C.B., SPE International Oil Field Nanotechnology Conference and Exhibition, The Netherlands, Noordwijk, 2012, 12–14 June. https://doi.org/10.2118/157119-MS

  21. Nassar, N.N., Hassan, A., and Pereira-Almao, P., J. Therm. Anal. Calorim., 2012, vol. 110, pp. 1327–1332. https://doi.org/10.1007/s10973-011-2045-0

    Article  CAS  Google Scholar 

  22. Nassar, N.N., Energy Fuels, 2010, vol. 24, pp. 4116–4122. https://doi.org/10.1021/ef100458g

    Article  CAS  Google Scholar 

  23. Shayan, N.N. and Mirzayi, B., Energy Fuels, 2015, vol. 29, pp. 1397–1406. https://doi.org/10.1021/ef502494d

    Article  CAS  Google Scholar 

  24. Tarboush, B.J.A. and Husein, M.M., Fuel Process. Technol., 2015, vol. 133, pp. 120–127. https://doi.org/10.1016/j.fuproc.2014.12.049

    Article  CAS  Google Scholar 

  25. Tarboush, B.J.A. and Husein, M.M., J. Colloid Interface Sci., 2012, vol. 378, pp. 64–69. https://doi.org/10.1016/j.jcis.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  26. Taborda, E.A., Franco, C.A., Lopera, S.H., Alvarado, V., and Cortés, F.B., Fuel, 2016, vol. 184, pp. 222–232. https://doi.org/10.1016/j.fuel.2016.07.013

    Article  CAS  Google Scholar 

  27. Mooney, M., J. Colloid Sci., 1951, vol. 6, pp. 162–170. https://doi.org/10.1016/0095-8522(51)90036-0

    Article  CAS  Google Scholar 

  28. Seraj, S., Mirzayi, B., and Nematollahzadeh, A., Adv. Powder Technol., 2014, vol. 25, pp. 1520–1526. https://doi.org/10.1016/j.apt.2014.04.008

    Article  CAS  Google Scholar 

  29. Mirzayi, B., Nematollahzadeh, A., Firouznia, F., and Heydari, S., NANO, 2014, vol. 9, pp. 1450013–1450023. https://doi.org/10.1142/S1793292014500131

    Article  CAS  Google Scholar 

  30. Dehaghani, A.H.S. and Badizad, M.H., Petroleum, 2016, vol. 2, pp. 415–424. https://doi.org/10.1016/j.petlm.2016.08.012

    Article  Google Scholar 

  31. Evdokimov, I.N. and Losev, A.P., Pet. Sci. Technol., 2007, vol. 25, pp. 55–66. https://doi.org/10.1080/10916460601186420

    Article  CAS  Google Scholar 

  32. Dudášová, D., Simon, S., Hemmingsen, P.V., and Sjöblom, J., Colloids Surf., A, 2008, vol. 317, pp. 1–9. https://doi.org/10.1016/j.colsurfa.2007.09.023

    Article  CAS  Google Scholar 

  33. Aksu, Z. and Gönen, F., Process Biochem., 2004, vol. 39, pp. 599–613. https://doi.org/10.1016/S0032-9592(03)00132-8

    Article  CAS  Google Scholar 

  34. Thomas, H.C., J. Am. Chem. Soc., 1944, vol. 66, pp. 1664–1666. https://doi.org/10.1021/ja01238a017

    Article  CAS  Google Scholar 

  35. Helal, A., Mazario, E., Mayoral, A., Decorse, P., Losno, R., Lion, C., Ammar, S., and Hémadi, M., Environ. Sci. Nano, 2018, vol. 5, pp. 158–168. https://doi.org/10.1039/C7EN00902J

    Article  CAS  Google Scholar 

  36. Liu, X., Worden, J.G., Huo, Q., and Brennan, J.P., J. Nanosci. Nanotechnol., 2006, vol. 6, pp. 1054–1059. https://doi.org/10.1166/jnn.2006.138

    Article  CAS  PubMed  Google Scholar 

  37. Giraldo, L., Erto, A., and Moreno-Piraján, J.C., Adsorption, 2013, vol. 19, pp. 465–474. https://doi.org/10.1007/s10450-012-9468-1

    Article  CAS  Google Scholar 

  38. Hannisdal, A., Ese, M.-H., Hemmingsen, P.V., and Sjöblom, J., Colloids Surf. A, 2006, vol. 276, pp. 45–58. https://doi.org/10.1016/j.colsurfa.2005.10.011

    Article  CAS  Google Scholar 

  39. Wilt, B.K., Welch, W.T., and Rankin, J.G., Energy Fuels, 1998, vol. 12, pp. 1008–1012. https://doi.org/10.1021/ef980078p

    Article  CAS  Google Scholar 

  40. Pernyeszi, T., Patzkó, Á., Berkesi, O., and Dékány, I., Colloids Surf. A, 1998, vol. 137, pp. 373–384. https://doi.org/10.1016/S0927-7757(98)00214-3

    Article  CAS  Google Scholar 

  41. Amin, F. and Solaimany Nazar, A.R., Iranian J. Oil Gas Sci. Technol., 2016, vol. 5, pp. 62–72. https://doi.org/10.22050/ijogst.2015.38531

    Article  Google Scholar 

  42. Taborda, E.A., Franco, C.A., Ruiz, M.A., Alvarado, V., and Cortés, F.B., Energy Fuels, 2017, vol. 31, pp. 1329–1338. https://doi.org/10.1021/acs.energyfuels.6b02686

    Article  CAS  Google Scholar 

  43. Setoodeh, N., Darvishi, P., and Esmaeilzadeh, F., J. Dispersion Sci. Technol., 2018, vol. 39, pp. 578–588. https://doi.org/10.1080/01932691.2017.1339607

    Article  CAS  Google Scholar 

  44. Jamialahmadi, M., Soltani, B., Müller–Steinhagen, H., and Rashtchian, D., Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 4624–4634. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.049

    Article  CAS  Google Scholar 

  45. Eskin, D., Ratulowski, J., Akbarzadeh, K., and Pan, S., Can. J. Chem. Eng., 2011, vol. 89, pp. 421–441. https://doi.org/10.1002/cjce.20507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mirzayi.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzayi, B., Younesi, M. & Nematollahzadeh, A. A New Investigation on Asphaltene Removal from Crude Oil: Experimental Study in Flow–Loop System Using Maghemite Nanoparticles. Pet. Chem. 61, 640–648 (2021). https://doi.org/10.1134/S0965544121060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121060037

Keywords:

Navigation