Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 11, 2021

Chemical effect on muonic atom formation through muon transfer reaction in benzene and cyclohexane samples

  • Makoto Inagaki , Kazuhiko Ninomiya , Akihiro Nambu , Takuto Kudo , Kentaro Terada , Akira Sato , Yoshitaka Kawashima , Dai Tomono and Atsushi Shinohara
From the journal Radiochimica Acta

Abstract

To investigate the chemical effect on the muon capture process through a muon transfer reaction from a muonic hydrogen atom, the formation rate of muonic carbon atoms is measured for benzene and cyclohexane molecules in liquid samples. The muon transfer rate to carbon atoms of the benzene molecule is higher than that to the carbon atoms of the cyclohexane molecule. Such a deviation has never been observed among those molecules for gas samples. This may be because the transfers occur from the excited states of muonic hydrogen atoms in the liquid system, whereas in the gas system, all the transfers occur from the 1s (ground) state of muon hydrogen atoms. The muonic hydrogen atoms in the excited states have a larger radius than those in the 1s state and are therefore considered to be affected by the steric hindrance of the molecular structure. This indicates that the excited states of muonic hydrogen atoms contribute significantly to the chemical effects on the muon transfer reaction.


Corresponding author: Makoto Inagaki, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan, Osaka590-0494, Japan; and Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan, E-mail:

Funding source: Japan Society for the Promotion of Science 10.13039/501100001691

Award Identifier / Grant number: JP18K11922

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number JP18K11922. The muon beam experiment at the MuSIC-M1 beamline in RCNP was conducted as an E529 experiment in the RCNP proposal number.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kubo, M. K. The positive muon as a chemical and magnetic probe of metal complexes and the negative muon as a unique tool for elemental analysis. Anal. Sci. 2002, 17, i653; https://doi.org/10.14891/analscisp.17icas.0.i653.0.Search in Google Scholar

2. Kubo, M. K., Moriyama, H., Tsuruoka, Y., Sakamoto, S., Koseto, E., Saito, T., Nishiyama, K. Non-destructive elemental depth-profiling with muonic X-rays. J. Radioanal. Nucl. Chem. 2008, 278, 777. https://doi.org/10.1007/s10967-008-1610-x.Search in Google Scholar

3. Ninomiya, K., Nagatomo, T., Kubo, K., Ito, T. U., Higemoto, W., Kita, M., Shinohara, A., Strasser, P., Kawamura, N., Shimomura, K., Miyake, Y., Saito, T. Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze. Bull. Chem. Soc. Jpn. 2012, 85, 228. https://doi.org/10.1246/bcsj.20110151.Search in Google Scholar

4. Terada, K., Ninomiya, K., Osawa, T., Tachibana, S., Miyake, Y., Kubo, M. K., Kawamura, N., Higemoto, W., Tsuchiyama, A., Ebihara, M., Uesugi, M. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam. Sci. Rep. 2014, 4, 5072. https://doi.org/10.1038/srep05072.Search in Google Scholar

5. Ninomiya, K., Kubo, M. K., Nagatomo, T., Higemoto, W., Ito, T. U., Kawamura, N., Strasser, P., Shimomura, K., Miyake, Y., Suzuki, T., Kobayashi, Y., Sakamoto, S., Shinohara, A., Saito, T. Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal. Chem. 2015, 87, 4597. https://doi.org/10.1021/acs.analchem.5b01169.Search in Google Scholar

6. Ninomiya, K., Inagaki, M., Kubo, M. K., Nagatomo, T., Higemoto, W., Kawamura, N., Strasser, P., Shimomura, K., Miyake, Y., Sakamoto, S., Shinohara, A., Saito, T. Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements. J. Radioanal. Nucl. Chem. 2016, 309, 65. https://doi.org/10.1007/s10967-016-4772-y.Search in Google Scholar

7. Kubo, M. K. Non-destructive elemental analysis using negative muon. J. Phys. Soc. Jpn. 2016, 85, 091015. https://doi.org/10.7566/jpsj.85.091015.Search in Google Scholar

8. Terada, K., Sato, A., Ninomiya, K., Kawashima, Y., Shimomura, K., Yoshida, G., Kawai, Y., Osawa, T., Tachibana, S. Non-destructive elemental analysis of a carbonaceous chondrite with direct current muon beam at MuSIC. Sci. Rep. 2017, 7, 15478. https://doi.org/10.1038/s41598-017-15719-5.Search in Google Scholar

9. Ninomiya, K., Kudo, T., Strasser, P., Terada, K., Kawai, Y., Tampo, M., Miyake, Y., Shinohara, A., Kubo, K. M. Development of non-destructive isotopic analysis methods using muon beams and their application to the analysis of lead. J. Radioanal. Nucl. Chem. 2019, 320, 801. https://doi.org/10.1007/s10967-019-06506-9.Search in Google Scholar

10. Kudo, T., Ninomiya, K., Strasser, P., Terada, K., Kawai, Y., Tampo, M., Miyake, Y., Shinohara, A., Kubo, K. M. Development of a non-destructive isotopic analysis method by gamma-ray emission measurement after negative muon irradiation. J. Radioanal. Nucl. Chem. 2019, 322, 1299. https://doi.org/10.1007/s10967-019-06682-8.Search in Google Scholar

11. Ninomiya, K. Non-destructive, position-selective, and multi-elemental analysis method involving negative muons. J. Nucl. Radiochem. Sci. 2019, 19, 8.10.14494/jnrs.19.8Search in Google Scholar

12. Umegaki, I., Higuchi, Y., Kondo, Y., Ninomiya, K., Takeshita, S., Tampo, M., Nakano, H., Oka, H., Sugiyama, J., Kubo, M. K., Miyake, Y. Nondestructive high-sensitivity detections of metallic lithium deposited on a battery anode using muonic X-rays. Anal. Chem. 2020, 92, 8194. https://doi.org/10.1021/acs.analchem.0c00370.Search in Google Scholar

13. Sekine, T., Hashimoto, K., Kaji, H., Yoshihara, K., Imanishi, N., Yoshimura, Y. Pionic X-ray intensity ratios in chromium compounds. J. Radioanal. Nucl. Chem. 1989, 135, 207. https://doi.org/10.1007/bf02164973.Search in Google Scholar

14. Placci, A., Zavattini, E., Bertin, A., Vitale, A. Direct measurement of the transfer rates of muons from μp muonic atoms to argon, krypton and xenon atoms. Il Nuovo Cimento A 1969, 64, 1053. https://doi.org/10.1007/bf02758849.Search in Google Scholar

15. Baijal, J. S., Diaz, J. A., Kaplan, S. N., Pyle, R. V. Atomic capture of Μ−mesons in chemical compounds. Il Nuovo Cimento 1963, 30, 711. https://doi.org/10.1007/bf02750408.Search in Google Scholar

16. Schneuwly, H., Dubler, T., Kaeser, K., Robert-Tissot, B., Schaller, L. A., Schellenberg, L. On the influence of the chemical bond on the relative muonic capture rates in elements of compounds. Phys. Lett. A 1978, 66, 188. https://doi.org/10.1016/0375-9601(78)90652-7.Search in Google Scholar

17. Yoshida, G., Ninomiya, K., Ito, T. U., Higemoto, W., Nagatomo, T., Strasser, P., Kawamura, N., Shimomura, K., Miyake, Y., Miura, T., Kubo, K. M., Shinohara, A. Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions. J. Radioanal. Nucl. Chem. 2015, 303, 1277. https://doi.org/10.1007/s10967-014-3602-3.Search in Google Scholar

18. Ninomiya, K., Kitanaka, M., Shinohara, A., Tampo, M., Miyake, Y., Sakai, Y., Kubo, M. K. Muonic X-ray measurements on mixtures of CaO/MgO and Fe3O4/MnO. J. Radioanal. Nucl. Chem. 2018, 316, 1107. https://doi.org/10.1007/s10967-018-5746-z.Search in Google Scholar

19. Ninomiya, K., Ito, T. U., Higemoto, W., Kawamura, N., Strasser, P., Nagatomo, T., Shimomura, K., Miyake, Y., Kita, M., Shinohara, A., Kubo, K. M., Miura, T. Negative muon capture ratios for nitrogen oxide molecules. J. Radioanal. Nucl. Chem. 2019, 319, 767. https://doi.org/10.1007/s10967-018-6366-3.Search in Google Scholar

20. Yoshida, G., Ninomiya, K., Inagaki, M., Higemoto, W., Strasser, P., Kawamura, N., Shimomura, K., Miyake, Y., Miura, T., Kubo, K. M., Shinohara, A. Initial quantum levels of captured muons in CO, CO2, and COS. J. Radioanal. Nucl. Chem. 2019, 320, 283. https://doi.org/10.1007/s10967-019-06470-4.Search in Google Scholar

21. Ninomiya, K., Kajino, M., Inagaki, M., Terada, K., Sato, A., Tomono, D., Kawashima, Y., Shinohara, A. Per atom muon capture ratios and effects of molecular structure on muon capture by γ-Fe2O3 and Fe3O4. J. Radioanal. Nucl. Chem. 2020, 324, 403. https://doi.org/10.1007/s10967-020-07065-0.Search in Google Scholar

22. Brandão d’Oliveira, A., Daniel, H., von Egidy, T. Coulomb capture and x-ray cascades of muons in metal halides. Phys. Rev. A 1976, 13, 1772. https://doi.org/10.1103/physreva.13.1772.Search in Google Scholar

23. Schneuwly, H., Boschung, M., Kaeser, K., Piller, G., Rüetschi, A., Schaller, L. A., Schellenberg, L. Capture of negative muons in cubic and hexagonal structures of carbon and boron nitride. Phys. Rev. A 1983, 27, 950. https://doi.org/10.1103/physreva.27.950.Search in Google Scholar

24. Ponomarev, L. I. Molecular structure effects on atomic and nuclear capture of mesons. Annu. Rev. Nucl. Sci. 1973, 23, 395. https://doi.org/10.1146/annurev.ns.23.120173.002143.Search in Google Scholar

25. Jackson, D. F., Lewis, C. A., O’Leary, K. Pion-capture probabilities in organic molecules. Phys. Rev. A 1982, 25, 3262. https://doi.org/10.1103/physreva.25.3262.Search in Google Scholar

26. Measday, D. F. The nuclear physics of muon capture. Phys. Rep. 2001, 354, 243. https://doi.org/10.1016/s0370-1573(01)00012-6.Search in Google Scholar

27. Horváth, D., Bannikov, A. V., Kachalkin, A. K., Lévay, B., Petrukhin, V. I., Vasilyev, V. A., Yutlandov, I. A., Strakovsky, I. I. Temperature breaking of hydrogen bonds in ammonia studied by π−-meson capture in hydrogen. Chem. Phys. Lett. 1982, 87, 504. https://doi.org/10.1016/0009-2614(82)83022-4.Search in Google Scholar

28. Horváth, D., Measday, D. F., Entezami, F., Hasinoff, M. D., Noble, A. J., Stanislaus, S., Virtue, C. J., Clough, A. S., Smith, J. R. H., Salomon, M., Aniol, K. A. Pion capture and hydrogen bonds in deuterated methanol. Phys. Rev. A 1991, 44, 1725. https://doi.org/10.1103/physreva.44.1725.Search in Google Scholar

29. Shinohara, A., Muroyama, T., Shintai, J., Kurachi, J., Furukawa, M., Miura, T., Yoshimura, Y., Saito, T., Ohdaira, T., Imanishi, N. Negative-pion capture process and its chemical effects in some hydrocarbons. Phys. Rev. A 1996, 53, 130. https://doi.org/10.1103/physreva.53.130.Search in Google Scholar

30. Muroyama, T., Shinohara, A., Saito, T., Yokoyama, A., Miura, T., Furukawa, M. Intensity patterns of pionic X rays emitted from some organic compounds. Radiochim. Acta 1998, 80, 31. https://doi.org/10.1524/ract.1998.80.1.31.Search in Google Scholar

31. Shinohara, A., Muroyama, T., Miura, T., Saito, T., Yokoyama, A., Furukawa, M. Behavior of pionic hydrogen atoms in liquid organic compounds. Hyperfine Interact 1997, 106, 301; https://doi.org/10.1023/a:1012683017411.10.1023/A:1012683017411Search in Google Scholar

32. Thalmann, Y.-A., Jacot-Guillarmod, R., Mulhauser, F., Schaller, L. A., Schellenberg, L., Schneuwly, H., Tresch, S., Werthmüller, A. Muon transfer from excited states of hydrogen and deuterium to nitrogen, neon, and argon. Phys. Rev. A 1998, 57, 1713. https://doi.org/10.1103/physreva.57.1713.Search in Google Scholar

33. Yoshida, G., Ninomiya, K., Inagaki, M., Higemoto, W., Kawamura, N., Shimomura, K., Miyake, Y., Miura, T., Kubo, M. K., Shinohara, A. Chemical environmental effects on muon transfer process in low pressure mixture gases; H2+CO and H2+CO2. Radioisotopes 2016, 65, 113. https://doi.org/10.3769/radioisotopes.65.113.Search in Google Scholar

34. Inagaki, M., Ninomiya, K., Yoshida, G., Higemoto, W., Kawamura, N., Miyake, Y., Miura, T., Shinohara, A. Muon transfer rates from muonic hydrogen atoms to gaseous benzene and cyclohexane. J. Nucl. Radiochem. Sci. 2018, 18, 5. https://doi.org/10.14494/jnrs.18.5.Search in Google Scholar

35. Hirayama, H., Namito, Y., Bielajew, A. F., Wilderman, S. J., Nelson, W. R. The EGS5 Code System. SLAC-Report-730; Stanford Linear Accelerator Center: Stanford, USA, 2005.10.2172/877459Search in Google Scholar

36. Muroyama, T. Formation and Transfer Process of Pionic Hydrogen Atoms in Lquid Organic Compounds [Yuki ekitai kagobutsu ni okeru pai chukanshi suiso genshi no keisei to ten’i katei]. Ph.D. Thesis; Nagoya University: Nagoya, Japan, 1997.Search in Google Scholar

37. Jacot-Guillarmod, R., Mulhauser, F., Piller, C., Schaller, L. A., Schellenberg, L., Schneuwly, H., Thalmann, Y.-A., Tresch, S., Werthmüller, A., Adamczak, A. Muon transfer from thermalized muonic hydrogen isotopes to argon. Phys. Rev. A 1997, 55, 3447. https://doi.org/10.1103/physreva.55.3447.Search in Google Scholar

38. Pisano, V., Puddu, G., Quarati, P., Sulis, L. The use of the master equation in the cascade of exotic systems in a pure Coulomb field. Il Nuovo Cimento A 1982, 72, 27. https://doi.org/10.1007/bf02784790.Search in Google Scholar

Received: 2020-11-05
Accepted: 2021-01-26
Published Online: 2021-02-11
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0112/html
Scroll to top button