Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 15, 2021

Effect of new metal–organic framework (zeolitic imidazolate framework [ZIF-12]) in mixed matrix membranes on structure, morphology, and gas separation properties

  • Mehtap Safak Boroglu ORCID logo EMAIL logo , Ismail Boz and Busra Kaya

Abstract

In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were PH2/CH4=331.41 and PCO2/CH4=53.75 gas pair.


Corresponding author: Mehtap Safak Boroglu, Department of Chemical Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey, E-mail:

Funding source: Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa

Award Identifier / Grant number: FHZ-2017-23418 and 33684

Funding source: Scientific and Technological Research Council of Turkey (TUBITAK)

Award Identifier / Grant number: 113M278

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (grant no. 113M278); and Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa (BAP project nos.: FHZ-2017-23418 and 33684).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liang, C. Z., Chung, T.-S., Lai, J.-Y. A review of polymeric composite membranes for gas separation and energy production. Prog. Polym. Sci. 2019, 97, 101141.10.1016/j.progpolymsci.2019.06.001Search in Google Scholar

2. Shi, Y., Liang, B., Lin, R. B., Zhang, C., Chen, B. Gas separation via hybrid metal–organic framework/polymer membranes. Trends Chem. 2020, 254–269.10.1016/j.trechm.2020.01.002Search in Google Scholar

3. Akbari, A., Karimi-Sabet, J., Ghoreishi, S. M. Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chem. Eng. Process. Process Intensif. 2020, 148, 107804.10.1016/j.cep.2020.107804Search in Google Scholar

4. Mazloom-Jalali, A., Shariatinia, Z., Tamai, I. A., Pakzad, S.-R., Malakootikhah, J. Fabrication of chitosan–polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int. J. Biol. Macromol. 2020, 153, 421–432.10.1016/j.ijbiomac.2020.03.033Search in Google Scholar PubMed

5. Wu, J., Liu, J., Chung, T.-S. Structural tuning of polymers of intrinsic microporosity via the copolymerization with macrocyclic 4-tert-butylcalix[4]arene for enhanced gas separation performance. Adv. Sustain. Syst. 2018, 2, 1800044.10.1002/adsu.201800044Search in Google Scholar

6. Wu, J., Japip, S., Chung, T.-S. Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. J. Mater. Chem. A 2020, 8, 6196–6209.10.1039/C9TA12028ASearch in Google Scholar

7. Askari, M., Chung, T.-S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci. 2013, 444, 173–183.10.1016/j.memsci.2013.05.016Search in Google Scholar

8. Usman, M., Ahmed, A., Yu, B., Peng, Q., Shen, Y., Cong, H. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. Eur. Polym. J. 2019, 120, 109262.10.1016/j.eurpolymj.2019.109262Search in Google Scholar

9. Zhu, J., Yuan, S., Wang, J., Zhang, Y., Tian, M., Van der Bruggen, B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog. Polym. Sci. 2020, 110, 101308.10.1016/j.progpolymsci.2020.101308Search in Google Scholar

10. Cheng, Y., Ying, Y., Japip, S., Jiang, S.-D., Chung, T.-S., Zhang, S., Zhao, D. Membrane technology: advanced porous materials in mixed matrix membranes (Adv. Mater. 47/2018). Adv. Mater. 2018, 30, 1870355.10.1002/adma.201870355Search in Google Scholar

11. Japip, S., Erifin, S., Chung, T.-S. Reduced thermal rearrangement temperature via formation of zeolitic imidazolate framework (ZIF)-8-based nanocomposites for hydrogen purification. Sep. Purif. Technol. 2019, 212, 965–973.10.1016/j.seppur.2018.12.016Search in Google Scholar

12. Soleimany, A., Karimi-Sabet, J., Hosseini, S. S. Experimental and modeling investigations towards tailoring cellulose triacetate membranes for high performance helium separation. Chem. Eng. Res. Des. 2018, 137, 194–212.10.1016/j.cherd.2018.07.011Search in Google Scholar

13. Japip, S., Wang, H., Xiao, Y., Shung Chung, T. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174.10.1016/j.memsci.2014.05.025Search in Google Scholar

14. Dorosti, F., Omidkhah, M., Abedini, R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem. Eng. Res. Des. 2014, 92, 2439–2448.10.1016/j.cherd.2014.02.018Search in Google Scholar

15. Dai, Y., Johnson, J. R., Karvan, O., Sholl, D. S., Koros, W. J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Membr. Sci. 2012, 401, 76–82.10.1016/j.memsci.2012.01.044Search in Google Scholar

16. Deng, Y., Wu, Y., Chen, G., Zheng, X., Dai, M., Peng, C. Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation. Chem. Eng. J. 2021, 405, 127004.10.1016/j.cej.2020.127004Search in Google Scholar

17. Bae, T. H., Lee, J. S., Qiu, W., Koros, W. J., Jones, C. W., Nair, S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 2010, 49, 9863–9866.10.1002/anie.201006141Search in Google Scholar PubMed

18. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., Okeeffe, M., Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.10.1021/ar900116gSearch in Google Scholar PubMed

19. Perez, E. V., Balkus, K. J., Ferraris, J. P., Musselman, I. H. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 2014, 463, 82–93.10.1016/j.memsci.2014.03.045Search in Google Scholar

20. Morris, W., He, N., Ray, K. G., Klonowski, P., Furukawa, H., Daniels, I. N., Houndonougbo, Y. A., Asta, M., Yaghi, O. M., Laird, B. B. A combined experimental-computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks. J. Phys. Chem. C 2012, 116, 24084–24090.10.1021/jp307170aSearch in Google Scholar

21. Japip, S., Wang, H., Xiao, Y., Shung Chung, T. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174.10.1016/j.memsci.2014.05.025Search in Google Scholar

22. Song, Q., Nataraj, S. K., Roussenova, M. V., Tan, J. C., Hughes, D. J., Li, W., Bourgoin, P., Alam, M. A., Cheetham, A. K., Al-Muhtaseb, S. A., Sivaniah, E. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359.10.1039/c2ee21996dSearch in Google Scholar

23. Bae, T.-H., Lee, J. S., Qiu, W., Koros, W. J., Jones, C. W., Nair, S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 2010, 49, 9863–9866.10.1002/anie.201006141Search in Google Scholar PubMed

24. Eiras, D., Labreche, Y., Pessan, L. A. Ultem®/ZIF-8 mixed matrix membranes for gas separation: transport and physical properties. Mater. Res. 2016, 19, 220–228.10.1590/1980-5373-MR-2015-0621Search in Google Scholar

25. Yang, T., Xiao, Y., Chung, T.-S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 2011, 4, 4171.10.1039/c1ee01324fSearch in Google Scholar

26. Yilmaz, G., Keskin, S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4, and H2 separations using molecular simulations. Ind. Eng. Chem. Res. 2012, 51, 14218–14228.10.1021/ie302290aSearch in Google Scholar

27. He, M., Yao, J., Liu, Q., Zhong, Z., Wang, H. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans. 2013, 42, 16608–13. Cambridge, England : 2003.10.1039/c3dt52103fSearch in Google Scholar PubMed

28. Shamsabadi, A. A., Kargari, A., Babaheidari, M. B., Laki, S., Ajami, H. Role of critical concentration of PEI in NMP solutions on gas permeation characteristics of PEI gas separation membranes. J. Ind. Eng. Chem. 2013, 19, 677–685.10.1016/j.jiec.2012.10.006Search in Google Scholar

29. Safak Boroglu, M., Ugur, M., Boz, I. Enhanced gas transport properties of mixed matrix membranes consisting of Matrimid and RHO type ZIF-12 particles. Chem. Eng. Res. Des. 2017, 123, 201–213.10.1016/j.cherd.2017.05.010Search in Google Scholar

30. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10186–10191.10.1073/pnas.0602439103Search in Google Scholar PubMed PubMed Central

31. Sheng, L., Guo, Y., Zhao, D., Ren, J., Wang, S., Deng, M. Enhanced CO2/CH4 separation performance of BTDA-TDI/MDI (P84) copolyimide mixed-matrix membranes by incorporating submicrometer-sized [Ni3(HCOO)6] framework crystals. J. Nat. Gas Sci. Eng. 2020, 75, 103123.10.1016/j.jngse.2019.103123Search in Google Scholar

32. Fan, Y., Yu, H., Xu, S., Shen, Q., Ye, H., Li, N. Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. J. Membr. Sci. 2020, 597, 117775.10.1016/j.memsci.2019.117775Search in Google Scholar

33. Sodeifian, G., Raji, M., Asghari, M., Rezakazemi, M., Dashti, A. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin. J. Chem. Eng. 2019, 27, 322–334.10.1016/j.cjche.2018.03.012Search in Google Scholar

34. Liu, B., Li, D., Yao, J., Sun, H. Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles. Sep. Purif. Technol. 2020, 239, 116519.10.1016/j.seppur.2020.116519Search in Google Scholar

35. Arjmandi, M., Pakizeh, M. Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: theory and experiment. J. Ind. Eng. Chem. 2014, 20, 3857–3868.10.1016/j.jiec.2013.12.091Search in Google Scholar

36. Sain, S., Ray, D., Mukhopadhyay, A., Sengupta, S., Kar, T., Ennis, C. J., Rahman, P. K. S. M. Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J. Appl. Polym. Sci. 2012, 126, E127–E134.10.1002/app.36723Search in Google Scholar

37. Brunetti, A., Cersosimo, M., Kim, J. S., Dong, G., Fontananova, E., Lee, Y. M., Drioli, E., Barbieri, G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. Int. J. Greenhouse Gas Control 2017, 61, 16–26.10.1016/j.ijggc.2017.03.024Search in Google Scholar

38. Li, Y., Chung, T., Cao, C., Kulprathıpanja, S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 2005, 260, 45–55.10.1016/j.memsci.2005.03.019Search in Google Scholar

39. Feijani, E. A., Mahdavi, H., Tavasoli, A. Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chem. Eng. Res. Des. 2015, 96, 87–102.10.1016/j.cherd.2015.02.009Search in Google Scholar

40. Amedi, H. R., Aghajani, M. Gas separation in mixed matrix membranes based on polyurethane containing SiO2, ZSM-5, and ZIF-8 nanoparticles. J. Nat. Gas Sci. Eng. 2016, 35, 695–702.10.1016/j.jngse.2016.09.015Search in Google Scholar

41. Basu, S., Cano-Odena, A., Vankelecom, I. F. J. Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. J. Membr. Sci. 2010, 362, 478–487.10.1016/j.memsci.2010.07.005Search in Google Scholar

42. Vega, J., Andrio, A., Lemus, A. A., Díaz, J. A. I., del Castillo, L. F., Gavara, R., Compañ, V. Modification of polyetherimide membranes with ZIFs fillers for CO2 separation. Sep. Purif. Technol. 2019, 212, 474–482.10.1016/j.seppur.2018.11.033Search in Google Scholar

43. Jamil, A., Ching, O. P., Shariff, A. M. Mixed matrix hollow fibre membrane comprising polyetherimide and modified montmorillonite with improved filler dispersion and CO2/CH4 separation performance. Appl. Clay Sci. 2017, 143, 115–124.10.1016/j.clay.2017.03.017Search in Google Scholar

44. Atalay-Oral, C., Tatlier, M. Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes. Sep. Purif. Technol. 2020, 236, 116277.10.1016/j.seppur.2019.116277Search in Google Scholar

45. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.10.1016/j.memsci.2008.04.030Search in Google Scholar

46. Comesaña-Gándara, B., Chen, J., Bezzu, C. G., Carta, M., Rose, I., Ferrari, M.-C., Esposito, E., Fuoco, A., Jansen, J. C., McKeown, N. B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740.10.1039/C9EE01384ASearch in Google Scholar

Received: 2020-11-02
Accepted: 2021-02-16
Published Online: 2021-03-15
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0288/html
Scroll to top button