Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 11, 2021

Ultraviolet blocking and antioxidant polyvinyl alcohol films incorporated with baicalin extraction from Scutellaria baicalensis Georgi

  • Jinshu Liu ORCID logo , Xiaoyan Ma , Wenzhao Shi , Jianwei Xing , Chaoqun Ma , Susong Li and Yayi Huang

Abstract

Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


Corresponding author: Xiaoyan Ma, Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Key Laboratory of Polymer Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi Province, China, E-mail:

Funding source: Education Department of Shaanxi Province

Award Identifier / Grant number: 19JK0362

Funding source: China National Textile and Apparel Council

Award Identifier / Grant number: 2019040

Funding source: Xi’an Polytechnic University

Award Identifier / Grant number: BS1721

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Shaanxi Provincial Department of Education (grant no. 19JK0362), Science and Technology Guidance Project of China National Textile and Apparel Council (grant no. 2019040], and the PhD Research Funds of Xi’an Polytechnic University (grant no. BS1721).

  3. Conflict of interest statement: The authors declare no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

1. Fairbrother, A., Hsueh, H. C., Kim, J. H., Jacobs, D., Perry, L., Goodwin, D., White, C., Watson, S., Sung, L. P. Temperature and light intensity effects on photodegradation of high-density polyethylene. Polym. Degrad. Stabil. 2019, 165, 153–160; https://doi.org/10.1016/j.polymdegradstab.2019.05.002.Search in Google Scholar

2. Liu, H., Hu, B., Zhang, L., Zhao, X., Shang, K., Wang, Y., Wang, J. Ultraviolet radiation over China: spatial distribution and trends. Renew. Sustain. Energy Rev. 2017, 76, 1371–1383; https://doi.org/10.1016/j.rser.2017.03.102.Search in Google Scholar

3. Arangdad, K., Detwiler, A., Cleven, C. D., Burk, C., Shamey, R., Pasquinelli, M. A., Freeman, H., El‐Shafei, A. Photodegradation of copolyester films: a mechanistic study. J. Appl. Polym. Sci. 2019, 136, 47148; https://doi.org/10.1002/app.47148.Search in Google Scholar

4. Singh, R. P., Tomer, N. S., Bhadraiah, S. V. Photo-oxidation studies on polyurethane coating: effect of additives on yellowing of polyurethane. Polym. Degrad. Stabil. 2001, 73, 443–446; https://doi.org/10.1016/s0141-3910(01)00127-6.Search in Google Scholar

5. Dong, X., Gao, S., Huang, J., Li, S., Zhu, T., Cheng, Y., Zhao, Y., Chen, Z., Lai, Y. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. J. Mater. Chem. 2019, 7, 2122–2128; https://doi.org/10.1039/c8ta10869b.Search in Google Scholar

6. Calvo, M. E., Castro Smirnov, J. R., Míguez, H. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. J. Polym. Sci., Polym. Phys. 2012, 50, 945–956; https://doi.org/10.1002/polb.23087.Search in Google Scholar

7. Galdi, A., Goldberg, A., Chiou, C. Photoprotection composition containing high levels of water-soluble UV filters. U.S. Patent 9,539,198, January 10, 2017.Search in Google Scholar

8. Beasley, D. G., Meyer, T. A. Characterization of the UVA protection provided by avobenzone, zinc oxide, and titanium dioxide in broad-spectrum sunscreen products. Am. J. Clin. Dermatol. 2010, 11, 413–421; https://doi.org/10.2165/11537050-000000000-00000.Search in Google Scholar

9. Akrman, J., Přikryl, J. Application of benzotriazole reactive UV absorbers to cellulose and determining sun protection of treated fabric spectrophotometrically. J. Appl. Polym. Sci. 2008, 108, 334–341; https://doi.org/10.1002/app.27641.Search in Google Scholar

10. Hiller, J., Klotz, K., Meyer, S., Uter, W., Hof, K., Greiner, A., Göen, T., Drexler, H. Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposure. Arch. Toxicol. 2019, 93, 2565–2574; https://doi.org/10.1007/s00204-019-02537-z.Search in Google Scholar

11. Schneider, S. L., Lim, H. W. Review of environmental effects of oxybenzone and other sunscreen active ingredients. J. Am. Acad. Dermatol. 2019, 80, 266–271; https://doi.org/10.1016/j.jaad.2018.06.033.Search in Google Scholar

12. Temel, G., Enginol, B., Aydin, M., Balta, D. K., Arsu, N. Photopolymerization and photophysical properties of amine linked benzophenone photoinitiator for free radical polymerization. J. Photochem. Photobiol., A 2011, 219, 26–31; https://doi.org/10.1016/j.jphotochem.2011.01.012.Search in Google Scholar

13. Schaller, C., Rogez, D., Braig, A. Hydroxyphenyl-s-triazines: advanced multipurpose UV-absorbers for coatings. J. Coat. Technol. Res. 2008, 5, 25–31; https://doi.org/10.1007/s11998-007-9025-0.Search in Google Scholar

14. Nikafshar, S., Zabihi, O., Ahmadi, M., Mirmohseni, A., Taseidifar, M., Naebe, M. The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials 2017, 10, 180; https://doi.org/10.3390/ma10020180.Search in Google Scholar

15. Huang, Z., Ding, A., Guo, H., Lu, G., Huang, X. Construction of nontoxic polymeric UV-absorber with great resistance to UV-photoaging. Sci. Rep. 2016, 6, 25508; https://doi.org/10.1038/srep25508.Search in Google Scholar

16. Rai, R., Shanmuga, S. C., Srinivas, C. Update on photoprotection. Indian J. Dermatol. 2012, 57, 335–342; https://doi.org/10.4103/0019-5154.100472.Search in Google Scholar

17. Dromgoole, S. H., Maibach, H. I. Sunscreening agent intolerance: contact and photocontact sensitization and contact urticaria. J. Am. Acad. Dermatol. 1990, 22, 1068–1078; https://doi.org/10.1016/0190-9622(90)70154-a.Search in Google Scholar

18. Downs, C. A., Kramarsky-Winter, E., Segal, R., Fauth, J., Knutson, S., Bronstein, O., Ciner, F. R., Jeger, R., Lichtenfeld, Y., Woodley, C. M. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands. Arch Environ Con Tox 2016, 70, 265–288; https://doi.org/10.1007/s00244-015-0227-7.Search in Google Scholar

19. Shivhare, Y., Jain, P., Soni, P., Jain, A. P. Potentials of botanicals as sunscreen agents: a review. Res. J. Pharmacogn. Phytochem. 2018, 10, 68–72; https://doi.org/10.5958/0975-4385.2018.00011.0.Search in Google Scholar

20. Yasin, Z. A. M., Ibrahim, F., Rashid, N. N., Razif, M. F. M., Yusof, R. The importance of some plant extracts as skin anti-aging resources: a review. Curr. Pharm. Biotechnol. 2017, 18(11), 864–876; https://doi.org/10.2174/1389201019666171219105920.Search in Google Scholar

21. Cefali, L., Ataide, J., Moriel, P., Foglio, M., Mazzola, P. The importance of some plant extracts as skin anti-aging resources: a review. Int. J. Cosmet. Sci. 2016, 38, 346–353; https://doi.org/10.1111/ics.12316.Search in Google Scholar

22. Vavilala, S. L., Ghag, S. B., D’Souza, J. S. Book review: algal green chemistry recent progress in biotechnology. Front. Bioeng. Biotech. 2018, 6, 96; https://doi.org/10.3389/fbioe.2018.00096.Search in Google Scholar

23. Jahan, A., Ahmad, I. Z., Fatima, N., Ansari, V. A., Akhtar, J. Algal bioactive compounds in the cosmeceutical industry: a review. Phycologia 2017, 56, 410–422; https://doi.org/10.2216/15.58.1.Search in Google Scholar

24. Ariede, M. B., Candido, T. M., Jacome, A. L. M., Velasco, M. V. R., de Carvalho, J. C. M., Baby, A. R. Cosmetic attributes of algae-a review. Algal. Res. 2017, 25, 483–487; https://doi.org/10.1016/j.algal.2017.05.019.Search in Google Scholar

25. Radice, M., Manfredini, S., Ziosi, P., Dissette, V., Buso, P., Fallacara, A., Vertuani, S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 2016, 114, 144–162; https://doi.org/10.1016/j.fitote.2016.09.003.Search in Google Scholar

26. Domonkos, C., Fitos, I., Visy, J., Zsila, F. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane. Mol. Pharm. 2013, 10, 4706–4716; https://doi.org/10.1021/mp400531n.Search in Google Scholar

27. Sri, N. U., Chaitanya, K., Prasad, M. V. S., Veeraiah, V., Veeraiah, A. FT-IR, FT-Raman and UV–Vis spectra and DFT calculations of 3-cyano-4-methylcoumarin. Spectrochim. Acta A 2012, 97, 728–736; https://doi.org/10.1016/j.saa.2012.07.055.Search in Google Scholar

28. Saratha, V., Pillai, S. I., Subramanian, S. Isolation and characterization of lupeol, a triterpenoid from Calotropis gigantea latex. Int. J. Pharm. Sci. Rev. Res. 2011, 10, 54–57.Search in Google Scholar

29. Phatak, S. V., Heble, M. R. Rosmarinic acid synthesis in shoot cultures of Mentha arvensis Linn. Indian J. Biotechnol. 2002, 1, 381–385.Search in Google Scholar

30. José, M. T. D. A. F., Pedrita, A. S., Emanuella, C. V. P., Raimundo, G. D. O. J., Fabrício, S. S., Jackson, R. G. D. S. A, Larissa, A. R., Xirley, P. N., Edigênia, C. D. C. A. Flavonoids as photoprotective agents: a systematic review. J. Med. Plants. Res. 2016, 10(47), 848–864; https://doi.org/10.5897/JMPR2016.6273.Search in Google Scholar

31. Saewan, N., Jimtaisong, A. Photoprotection of natural flavonoids. J. Appl. Pharm. Sci. 2013, 3, 129–141; https://doi.org/10.7324/JAPS.2013.3923.Search in Google Scholar

32. Canavan, T. N., McClees, S. F., Duncan, J. R., Elewski, B. E. Lichen planopilaris in the setting of hair sunscreen spray. Skin Append Disord. 2019, 5, 108–110; https://doi.org/10.1159/000490362.Search in Google Scholar

33. Kostyuk, V., Potapovich, A., Albuhaydar, A. R., Mayer, W., De Luca, C., Korkina, L. Natural substances for prevention of skin photoaging: screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Res. 2018, 21, 91–101; https://doi.org/10.1089/rej.2017.1931.Search in Google Scholar

34. Rosic, N. N. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Mar. Drugs 2019, 17, 638; https://doi.org/10.3390/md17110638.Search in Google Scholar

35. Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., Bialczyk, J. Mycosporine-like amino acids: potential health and beauty ingredients. Mar. Drugs 2017, 15, 326; https://doi.org/10.3390/md15100326.Search in Google Scholar

36. Neale, P. J., Banaszak, A. T., Jarriel, C. R. J. Phycol. 1998, 34, 928–938; https://doi.org/10.1046/j.1529-8817.1998.340928.x.Search in Google Scholar

37. Akhtar, M. J., Jacquot, M., Jasniewski, J., Jacquot, C., Imran, M., Jamshidian, M., Paris, C., Desobry, S. Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine‐like amino acids protect against inhibition of photosynthesis. Carbohydr. Polym. 2012, 89, 1150–1158; https://doi.org/10.1016/j.carbpol.2012.03.088.Search in Google Scholar

38. Kanatt, S. R., Rao, M., Chawla, S., Sharma, A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloid 2012, 29, 290–297; https://doi.org/10.1016/j.foodhyd.2012.03.005.Search in Google Scholar

39. Zhang, Q., Lin, L., Ye, W. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 2018, 13, 20; https://doi.org/10.1186/s13020-018-0177-x.Search in Google Scholar

40. Jakab, G., Bogdán, D., Mazák, K., Deme, R., Mucsi, Z., Mándity, I. M., Noszál, B., Kállai-Szabó, N., Antal, I. Physicochemical profiling of baicalin along with the development and characterization of cyclodextrin inclusion complexes. AAPS PharmSciTech 2019, 20, 314; https://doi.org/10.1208/s12249-019-1525-6.Search in Google Scholar

41. Chen, H., Gao, Y., Wu, J., Chen, Y., Chen, B., Hu, J., Zhou, J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett. 2014, 354, 5–11; https://doi.org/10.1016/j.canlet.2014.08.003.Search in Google Scholar

42. Zhao, Q., Chen, X., Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016, 61, 1391–1398; https://doi.org/10.1007/s11434-016-1136-5.Search in Google Scholar

43. Shin, S. H., Bak, S., Kim, M. K., Sung, Y. K., Kim, J. C. Baicalin, a flavonoid, affects the activity of human dermal papilla cells and promotes anagen induction in mice. N-S Arch Pharmacol. 2015, 388, 583–586; https://doi.org/10.1007/s00210-014-1075-0.Search in Google Scholar

44. Yang, Y., Wei, M. C., Huang, T., Lee, S., Lin, S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Ind. Crop. Prod. 2013, 45, 182–190; https://doi.org/10.1016/j.indcrop.2012.11.041.Search in Google Scholar

45. Rostagno, M. A., Palma, M., Barroso, C. G. Microwave assisted extraction of soy isoflavones. Anal. Chim. Acta 2007, 588, 274–282; https://doi.org/10.1016/j.aca.2007.02.010.Search in Google Scholar

46. Cheng, C., Jin, W., Wu, L. Study on microwave-assisted extraction of baicalin from scutellaria baicalensis. Chem. Ind. For. Prod. 2005, 25, 81–83; https://doi.org/10.3321/j.issn:0253-2417.2005.01.020.Search in Google Scholar

47. Wang, H., Ma, X., Cheng, Q., Wang, L., Zhang, L. Deep eutectic solvent-based ultrahigh pressure extraction of baicalin from Scutellaria baicalensis Georgi. Molecules 2018, 23, 3233; https://doi.org/10.3390/molecules23123233.Search in Google Scholar

48. Chang, Y., Liu, B., Shen, B. Orthogonal array design for the optimization of supercritical fluid extraction of baicalin from roots of Scutellaria baicalensis Georgi. J. Sep. Sci. 2007, 30, 1568–1574; https://doi.org/10.1002/jssc.200700020.Search in Google Scholar

49. Lin, M., Tsai, M., Wen, K. Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatogr. A 1999, 830, 387–395; https://doi.org/10.1016/s0021-9673(98)00906-6.Search in Google Scholar

50. Choi, W., Kwon, H., Lee, H. Enhancement of anti-skin inflammatory activities of Scutellaria baicalensis using an alkaline reduced water extraction process. Food Sci. Biotechnol. 2014, 23, 1859–1866; https://doi.org/10.1007/s10068-014-0254-6.Search in Google Scholar

51. Chang, W., Lin, E., Hsu, S., Hu, P., Chuang, C., Liao, C., Fu, C., Su, C., Gong, C., Hsiao, C. Baicalin scavenged reactive oxygen species and protected human keratinocytes against UVB-induced cytotoxicity. In Vivo 2016, 30, 605–610.Search in Google Scholar

52. Zhou, B., Lin, B., Jin, S., Luo, D. Mitigation of acute ultraviolet B radiation‐mediated damages by baicalin in mouse skin. Photodermatol Photo 2009, 25, 250–258; https://doi.org/10.1111/j.1600-0781.2009.00454.x.Search in Google Scholar

53. Zhou, B., Jin, S., Chen, X., Lin, X., Cai, B., Gao, J., Luo, D. Protective effect of the baicalin against DNA damage induced by ultraviolet B irradiation to mouse epidermis. Photodermatol Photo 2008, 24, 175–182; https://doi.org/10.1111/j.1600-0781.2008.00356.x.Search in Google Scholar

54. Chen, L., Zhang, B. Chemical compositions and ultraviolet resistance of vegetable dyes extracted from Scutellaria baicalensis. J. Textil. Res. 2016, 37, 86–90; https://doi.org/10.13475/j.fzxb.20150400305.Search in Google Scholar

55. Zhou, Y., Yang, Z., Tang, R. Bioactive and UV protective silk materials containing baicalin-the multifunctional plant extract from Scutellaria baicalensis Georgi. Mater. Sci. Eng. C 2016, 67, 336–344; https://doi.org/10.1016/j.msec.2016.05.063.Search in Google Scholar

56. Li, H., Luo, S., Su, J., Ke, H., Wang, W., Yang, B. Optimization of extraction conditions for flavonoid composition and antioxidant activity of Radix scutellariae. Anal. Lett. 2015, 48, 1234–1244; https://doi.org/10.1080/00032719.2014.979360.Search in Google Scholar

57. Wei, M., Yang, Y., Chiu, H., Hong, S. Development of a hyphenated procedure of heat-reflux and ultrasound-assisted extraction followed by RP-HPLC separation for the determination of three flavonoids content in Scutellaria barbata D. Don. J. Chromatogr. B 2013, 940, 126–134; https://doi.org/10.1016/j.jchromb.2013.09.015.Search in Google Scholar

58. Stankovic, S. B., Popovic, D., Poparic, G. B., Bizjak, M. Ultraviolet protection factor of gray-state plain cotton knitted fabrics. Textil. Res. J. 2009, 79, 1034–1042; https://doi.org/10.1177/0040517508102016.Search in Google Scholar

59. Han, J. H., Floros, J. D. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast. Film Sheet. 1997, 13, 287–298; https://doi.org/10.1177/875608799701300405.Search in Google Scholar

60. Singleton, V. L., Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.Search in Google Scholar

61. Yamaguchi, T., Takamura, H., Matoba, T., Terao, J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Biosci. Biotech. Bioch. 1998, 62, 1201–1204; https://doi.org/10.1271/bbb.62.1201.Search in Google Scholar

62. Vimala, K., Mohan, Y. M., Sivudu, K. S., Varaprasad, K., Ravindra, S., Reddy, N. N., Padma, Y., Sreedhar, B., MohanaRaju, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf., B 2010, 76, 248–258; https://doi.org/10.1016/j.colsurfb.2009.10.044.Search in Google Scholar

63. Gierschner, J., Duroux, J. L., Trouillas, P. UV/Visible spectra of natural polyphenols: a time-dependent density functional theory study. Food Chem. 2012, 131, 79–89. https://doi.org/10.1016/j.foodchem.2011.08.034.Search in Google Scholar

64. Perez, C. A., Wei, Y., Guo, M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J. Inorg. Biochem. 2009, 103, 326–332; https://doi.org/10.1016/j.jinorgbio.2008.11.003.Search in Google Scholar

65. Kavoosi, G., Nateghpoor, B., Dadfar, S. M. M., Dadfar, S. M. A. Antioxidant, antifungal, water binding, and mechanical properties of poly (vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. J. Appl. Polym. Sci. 2014, 131, 40937; https://doi.org/10.1002/app.40937.Search in Google Scholar

66. Kavoosi, G., Bordbar, Z., Dadfar, S. M., Dadfar, S. M. M. Preparation and characterization of a novel gelatin–poly(vinyl alcohol) hydrogel film loaded with Zataria multiflora essential oil for antibacterial–antioxidant wound‐dressing applications. J. Appl. Polym. Sci. 2017, 134, 45351; https://doi.org/10.1002/app.45351.Search in Google Scholar

67. Hou, X., Liu, P., Zhao, M., Duan, B., Deng, T., Han, F. Purification and antioxidant activities of baicalin isolated from the root of huangqin (Scutellaria baicalensis gcorsi). J. Food Sci. Technol. 2013, 50, 615–619.10.1007/s13197-012-0857-ySearch in Google Scholar PubMed PubMed Central

68. Flores, S., Conte, A., Campos, C., Gerschenson, L., Del Nobile, M. Mass transport properties of tapioca-based active edible films. J. Food Eng. 2007, 81, 580–586; https://doi.org/10.1016/j.jfoodeng.2006.12.010.Search in Google Scholar

69. Arcan, I., Yemenicioğlu, A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res. Int. 2011, 44, 550–556; https://doi.org/10.1016/j.foodres.2010.11.034.Search in Google Scholar

70. Müller, C. M., Yamashita, F., Laurindo, J. B. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr. Polym. 2008, 72, 82–87; https://doi.org/10.1016/j.carbpol.2007.07.026.Search in Google Scholar

71. Song, W., Markel, D. C., Wang, S., Shi, T., Mao, G., Ren, W. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 2012, 23, 115101; https://doi.org/10.1088/0957-4484/23/11/115101.Search in Google Scholar

72. Ma, Q., Ren, Y., Wang, L. Investigation of antioxidant activity and release kinetics of curcumin from tara gum/polyvinyl alcohol active film. Food Hydrocolloid 2017, 70, 286–292; https://doi.org/10.1016/j.foodhyd.2017.04.018.Search in Google Scholar

73. Yuan, G., Lv, H., Yang, B., Chen, X., Sun, H. Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules 2015, 20, 11034–11045; https://doi.org/10.3390/molecules200611034.Search in Google Scholar

74. Wang, Y., Li, T., Ma, P., Bai, H., Xie, Y., Chen, M., Dong, W. Simultaneous enhancements of UV-shielding properties and photostability of poly (vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustain. Chem. Eng. 2016, 4, 2252–2258; https://doi.org/10.1021/acssuschemeng.5b01734.Search in Google Scholar

75. Yang, D., Cai, Y., Wang, W., Li, K., Qian, P., Tian, J., Cao, K. Study on the inclusion compound of baicalin by Raman spectroscopy and infrared spectroscopy. Chin. J. Light Scatter 2012, 24, 276–279; https://doi.org/10.3969/j.issn.1004-5929.2012.03.012.Search in Google Scholar

76. Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., Nasri, M. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. 2016, 23, 15310–15320; https://doi.org/10.1007/s11356-016-6699-9.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0071).


Received: 2020-04-02
Accepted: 2020-11-27
Published Online: 2021-02-11
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0071/html
Scroll to top button