Skip to main content
Log in

Loss of Memory and Moment Bounds for Nonstationary Intermittent Dynamical Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study nonstationary intermittent dynamical systems, such as compositions of a (deterministic) sequence of Pomeau–Manneville maps. We prove two main results: sharp bounds on memory loss, including the “unexpected” faster rate for a large class of measures, and sharp moment bounds for Birkhoff sums and, more generally, “separately Hölder” observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Most spaces are universally measurable, see Shortt [37].

References

  1. Aimino, R., Hu, H., Nicol, M., Török, A., Vaienti, S.: Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete Contin. Dyn. Syst. 35, 793–806 (2015)

    Article  MathSciNet  Google Scholar 

  2. Aimino, R., Nicol, M., Vaienti, S.: Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Relat. Fields 162, 233–274 (2015)

    Article  MathSciNet  Google Scholar 

  3. Aimino, R., Rousseau, J.: Concentration inequalities for sequential dynamical systems of the unit interval. Ergod. Theory Dynam. Syst. 36, 2384–2407 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bahsoun, W., Bose, C.: Mixing rates and limit theorems for random intermittent maps. Nonlinearity 29, 1417–1433 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bahsoun, W., Bose, C., Duan, Y.: Decay of correlation for random intermittent maps. Nonlinearity 27, 1543–1554 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bahsoun, W., Bose, C., Ruziboev, M.: Quenched decay of correlations for slowly mixing systems. Trans. Amer. Math. Soc. 372, 6547–6587 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bahsoun, W., Ruziboev, M., Saussol, B.: Linear response for random dynamical systems. Adv. Math. 364, 107011 (2020)

    Article  MathSciNet  Google Scholar 

  8. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Conze, J.P., Raugi, A.: Limit theorems for sequential expanding dynamical systems on \([0,1]\), Ergodic theory and related fields. Contemp. Math. 430, 89–121 (2007)

    Article  Google Scholar 

  10. Dedecker, J., Gouëzel, S., Merlevède, F.: Large and moderate deviations for bounded functions of slowly mixing Markov chains. Stoch. Dyn. 18, 1850017 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dedecker, J., Merlevède, F.: Moment bounds for dependent sequences in smooth Banach spaces. Stochastic Process. Appl. 125, 3401–3429 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dobbs, N., Stenlund, M.: Quasistatic dynamical systems. Ergod. Theory Dynam. Syst. 37, 2556–2596 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dragičević, D., Froyland, G., Gonzáez-Tokman, C., Vaienti, S.: Almost sure invariance principle for random piecewise expanding maps. Nonlinearity 31, 2252–2280 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dragičević, D., Froyland, G., González-Tokman, C., Vaienti, S.: A spectral approach for quenched limit theorems for random expanding dynamical systems. Commun. Math. Phys. 360, 1121–1187 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dragičević, D., Froyland, G., González-Tokman, C., Vaienti, S.: A spectral approach for quenched limit theorems for random hyperbolic dynamical systems. Trans. Am. Math. Soc. 373, 629–664 (2020)

    Article  MathSciNet  Google Scholar 

  16. Freitas, A.C.M., Freitas, J.M., Vaienti, S.: Extreme Value Laws for sequences of intermittent maps. Proc. Am. Math. Soc. 146, 2103–2116 (2018)

    Article  MathSciNet  Google Scholar 

  17. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128, 82–122 (2004)

    Article  MathSciNet  Google Scholar 

  18. Gouëzel, S.: Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139, 29–65 (2004)

    Article  MathSciNet  Google Scholar 

  19. Gouëzel, S., Melbourne, I.: Moment bounds and concentration inequalities for slowly mixing dynamical systems. Electron. J. Probab. 19, 93 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hafouta, Y.: A vector valued almost sure invariance principle for time dependent non-uniformly expanding dynamical systems (2019). arXiv:1910.12792

  21. Hagelstein, P.A.: Weak \(L^1\) norms of random sums. Proc. Am. Math. Soc. 133, 2327–2334 (2005)

    Article  Google Scholar 

  22. Haydn, N., Nicol, M., Török, A., Vaienti, S.: Almost sure invariance principle for sequential and non-stationary dynamical systems. Trans. Am. Math. Soc. 369, 5293–5316 (2017)

    Article  MathSciNet  Google Scholar 

  23. Haydn, N., Rousseau, J., Yang, F.: Exponential law for random maps on compact manifolds (2017). arXiv:1705.05869

  24. Johnson, W.B., Schechtman, G.: Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 3, 267–275 (1988)

    Article  MathSciNet  Google Scholar 

  25. Korepanov, A., Kosloff, Z., Melbourne, I.: Martingale-coboundary decomposition for families of dynamical systems. Ann. Inst. H Poincaré Anal. Non Linéaire 35, 859–885 (2018)

  26. Korepanov, A., Kosloff, Z., Melbourne, I.: Explicit coupling argument for nonuniformly hyperbolic transformations. Proc. R. Soc. Edinb. Sect. A. 149, 101–130 (2019)

    Article  Google Scholar 

  27. Leppänen, J.: Functional correlation decay and multivariate normal approximation for non-uniformly expanding maps. Nonlinearity 30, 4239–4259 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Leppänen, J.: Intermittent quasistatic dynamical systems: weak convergence of fluctuations. Nonauton. Dyn. Syst. 5, 8–34 (2018)

    Article  MathSciNet  Google Scholar 

  29. Leppänen, J., Stenlund, M.: Quasistatic dynamics with intermittency. Math. Phys. Anal. Geom. 19, 8 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lindvall, T.: On coupling of discrete renewal processes. Z. Wahrscheinlichkeitstheor. verw. Geb. 48, 57–70 (1979)

    Article  MathSciNet  Google Scholar 

  31. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dynam. Syst. 19, 671–685 (1999)

    Article  MathSciNet  Google Scholar 

  32. Melbourne, I.: Large and moderate deviations for slowly mixing dynamical systems. Proc. Am. Math. Soc. 137, 1735–1741 (2009)

    Article  MathSciNet  Google Scholar 

  33. Nicol, M., Pereira, F.P., Török, A.: Large deviations and central limit theorems for sequential and random systems of intermittent maps, Ergodic Theory Dynam. Systems, to appear (2019). arXiv:1909.07435

  34. Nicol, M., Török, A., Vaienti, S.: Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Theory Dynam. Syst. 38, 1127–1153 (2018)

    Article  MathSciNet  Google Scholar 

  35. Pollicott, M., Sharp, R.: Large deviations for intermittent maps. Nonlinearity 22, 2079–2092 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  37. Shortt, R.M.: Universally measurable spaces: an invariance theorem and diversecharacterizations. Fund. Math. 121, 169–176 (1984)

    Article  MathSciNet  Google Scholar 

  38. Stadlbauer, M., Varandas, P., Zhang, X.: Quenched and annealed equilibrium states for random Ruelle expanding maps and applications (2020). arXiv:2004.04763

  39. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean Spaces. Princeton Univ Press (1971)

  40. Stenlund, M., Young, L., Zhang, H.: Dispersing billiards with moving scatterers. Commun. Math. Phys. 322, 909–955 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Su, Y.: Vector-valued almost sure invariance principle for non-stationary dynamical systems (2019). arXiv:1903.09763

  42. Vershynin, R.: Weak triangle inequalities for weak \(L^1\) norm, https://www.math.uci.edu/~rvershyn/papers/weak-L1.pdf

Download references

Acknowledgements

A.K. is supported by an Engineering and Physical Sciences Research Council grant EP/P034489/1. J.L. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 787304). The authors thank Viviane Baladi, Mark Holland and universities of Exeter and Sorbonne for support and hospitality during their visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korepanov.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korepanov, A., Leppänen, J. Loss of Memory and Moment Bounds for Nonstationary Intermittent Dynamical Systems. Commun. Math. Phys. 385, 905–935 (2021). https://doi.org/10.1007/s00220-021-04071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04071-5

Navigation