Skip to main content
Log in

Activated decay of a metastable state: transient times for small and large dissipation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The time evolution of the thermally activated decay rates is considered. This evolution is of particular importance for the recent nanoscale experiments discussed in the literature, where the potential barrier is relatively low (or the temperature is relatively high). The single-molecule pulling is one example of such experiments. The decay process is modeled in the present work through computer solving the stochastic (Langevin) equations. Altogether about a hundred of high precision rates have been obtained and analyzed. The rates are registered at the absorption point located far beyond the barrier to exclude the influence of the backscattering on the value of the quasistationary decay rate. The transient time, i.e., the time lapse during which the rate attains half of its quasistationary value, has been extracted. The dependence of the transient times upon a damping parameter is compared with that of the inverse quasistationary decay rate. Two analytical formulae approximating the time-dependences of the numerical rates are proposed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G D Adeev, A V Karpov, P N Nadtochii and D V Vanin Phys. Elemen. Part. At. Nucl. 36 378 (2005)

    Google Scholar 

  2. Y Abe, S Ayik, P-G Reinhard and E Suraud Phys. Rep. 275 49 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. E Vardaci et al Phys. Rev. C 92 034610 (2015)

    Article  ADS  Google Scholar 

  4. G Hummer and A Szabo Biophys. J. 85 5 (2003)

    Article  ADS  Google Scholar 

  5. O K Dudko, G Hummer and A Szabo Phys. Rev. Lett. 96 108101 (2006)

    Article  ADS  Google Scholar 

  6. S Santucci, L Vanel and S Ciliberto Eur. Phys. J. Spec. Top. 146 341 (2007)

    Article  Google Scholar 

  7. H A Kramers Physica 7 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  8. S Zambelli Arch. History Exact Sci. 64 395 (2010)

    Article  MathSciNet  Google Scholar 

  9. P Talkner and P Hänggi New Trends in Kramers’ Reaction Rate Theory. (Berlin: Springer) p 251 (2012)

  10. M K Chaudhury and P S Goohpattader Eur. Phys. J. E 35 131 (2012)

    Article  Google Scholar 

  11. I I Gontchar et al Phys. Rev. C 82 064606 (2010)

    Article  ADS  Google Scholar 

  12. I I Gontchar and M V Chushnyakova Pramana J. Phys. 88 90 (2017)

    Article  ADS  Google Scholar 

  13. M V Chushnyakova, I I Gontchar and A I Blesman J. Phys. Conf. Ser. 1260 092001 (2019)

    Article  Google Scholar 

  14. I I Gontchar, M V Chushnyakova and A I Blesman J. Phys. Conf. Ser. 1260 092002 (2019)

    Article  Google Scholar 

  15. M V Chushnyakova and I I Gontchar Phys. Rev. E 97 032107 (2018)

    Article  ADS  Google Scholar 

  16. M V Chushnyakova and I I Gontchar Braz. J. Phys. 49 587 (2019)

    Article  ADS  Google Scholar 

  17. P Hänggi, P Talkner and M Borkovec Rev. Mod. Phys. 62 251 (1990)

    Article  ADS  Google Scholar 

  18. H-X Zhou Q. Rev. Biophys. 43 219 (2010)

    Article  Google Scholar 

  19. P Grangé, L Jun-Qing and H A Weidenmüller Phys. Rev. C 27 2063 (1983)

    Article  ADS  Google Scholar 

  20. I I Gontchar and N E Aktaev Phys. Rev. C 80 044601 (2009)

    Article  ADS  Google Scholar 

  21. M V Chushnyakova, I I Gontchar and A I Blesman J. Phys. Conf. Ser. 1050 012018 (2018)

    Article  Google Scholar 

  22. I I Gontchar, M V Chushnyakova and A I Blesman J. Phys. Conf. Ser. 1210 012052 (2019)

    Article  Google Scholar 

  23. A E Gettinger and I I Gontchar J. Phys. G 26 347 (2000)

    Article  ADS  Google Scholar 

  24. I I Gontchar Phys. Elemen. Part. At. Nucl. 26 394 (1995)

    ADS  Google Scholar 

  25. I Gontchar, L A Litnevsky and P Fröbrich Comput. Phys. Commun. 107 223 (1997)

    Article  ADS  Google Scholar 

  26. W Ye Phys. Rev. C 79 031601 (2009)

    Article  ADS  Google Scholar 

  27. W Ye, N Wang and X Chang Phys. Rev. C 88 054606 (2013)

    Article  ADS  Google Scholar 

  28. I I Gontchar and M V Chushnyakova Chin. J. Phys. 67 388 (2020)

    Article  Google Scholar 

  29. M V Chushnyakova and I I Gontchar J. Phys. G 40 095108 (2013)

    Article  ADS  Google Scholar 

  30. M V Chushnyakova, R Bhattacharya and I I Gontchar Phys. Rev. C 90 017603 (2014)

    Article  ADS  Google Scholar 

  31. Y Wang et al Chin. J. Phys. 56 1187 (2018)

    Article  Google Scholar 

  32. N E Aktaev, A A Fedorets, E Y Bormashenko and M Nosonovsky J. Phys. Chem. Lett. 9 3834 (2018)

    Article  Google Scholar 

  33. H A Oliveira and G J Delben Chin. J. Phys. 60 141 (2019)

    Article  Google Scholar 

  34. J Xu and X Luo Chin. J. Phys. 63 382 (2020)

    Article  Google Scholar 

  35. H Risken and T Frank The Fokker–Planck Equation, 2nd ed. (Heidelberg: Springer) p 472 (1996)

  36. P E Kloeden and E Platen Numerical Solution of Stochastic Differential Equations. (Heidelberg: Springer) p 636 (1992)

  37. M Büttiker, E P Harris and R Landauer Phys. Rev. B 28 1268 (1983)

    Article  ADS  Google Scholar 

  38. E Pollak, H Grabert and P Hänggi J. Chem. Phys. 91 4073 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chushnyakova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The time step \(\tau\) of the numerical modeling is a technical parameter which, being chosen correctly, should not influence the physical results. To demonstrate the accuracy of our numerical calculations, we show in Table

Table 1 The dependence of the quasistationary numerical decay rate \(R_{D}\) upon the time step \(\tau\) for different values of the damping (\(\varphi\)) and governing (\(G\)) parameters

1 how the calculated quasistationary decay rate \(R_{{\text{D}}}\) depends upon \(\tau\) for several values of the damping and governing parameters. While the time step is relatively large and decreases, the same happens to \(R_{{\text{D}}}\): this means that \(\tau\) is too big.

At the smaller values of the time step, the decay rate ceases to depend regularly upon \(\tau\) as it is expected. Finally, when the time step becomes small enough the quasistationary decay rate \(R_{{\text{D}}}\) stays constant within the statistical errors. One sees this behavior of \(R_{{\text{D}}} \left( \tau \right)\) for any set of the damping and governing parameters in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chushnyakova, M.V., Gontchar, I.I. & Khmyrova, N.A. Activated decay of a metastable state: transient times for small and large dissipation. Indian J Phys 96, 1599–1605 (2022). https://doi.org/10.1007/s12648-021-02061-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02061-w

Keywords

Navigation