Skip to main content
Log in

Pore-Scale Study of Rarefied Gas Flows Using Low-Variance Deviational Simulation Monte Carlo Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Gaseous flow through ultra-tight porous media, e.g. shale and some high-performance insulation materials, is often rarefied, invalidating an analysis by the continuum flow theory. Such rarefied flows can be accurately described by the kinetic theory of gases which utilizes the Boltzmann equation and its simplified kinetic models. While discrete velocity methods have been successful in directly solving these equations, the immense potential of a particle-based solution of the variance-reduced Boltzmann-BGK (Bhatnagar–Gross–Krook) equation for rarefied flows in porous media has not been exploited yet. Here, a parallel solver based on the low variance deviational simulation Monte Carlo method is developed for 3D flows, which enables pore-scale simulations using digital images of porous media samples. The unique advantage of this particle-based formulation is in providing additional insights regarding the multi-scale nature of the flow and surface/gas interactions via two new parameters, i.e. pore and surface activity, respectively. Together, these two parameters can identify key flow properties of the porous media. The computational efficiency and accuracy of the current method has also been analysed, suggesting that this new solver is a powerful simulation tool to quantify flow properties of ultra-tight porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allshouse, M.R., Hadjiconstantinou, N.G.: Low-variance deviational monte carlo simulations of pressure-driven flow in micro-and nanoscale channels. In: AIP Conference Proceedings, vol. 1084, pp. 1015–1020 (2008)

  • Al-Mohssen, H.A., Hadjiconstantinou, N.G.: Low-variance direct Monte Carlo simulations using importance weights. ESAIM Math. Modell. Numer. Anal. 44(5), 1069 (2010)

    Article  Google Scholar 

  • Antohe, B., Lage, J., Price, D., Weber, R.M.: Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers. Int. J. Heat Fluid Flow 17(6), 594 (1996)

    Article  Google Scholar 

  • Bai, B., Elgmati, M., Zhang, H., Wei, M.: Rock characterization of Fayetteville shale gas plays. Fuel 105, 645 (2013)

    Article  Google Scholar 

  • Baker, L.L., Hadjiconstantinou, N.G.: Variance reduction in particle methods for solving the Boltzmann equation. In:ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, pp. 377–383 (2006)

  • Baker, L.L., Hadjiconstantinou, N.G.: Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys. Fluids 17(5), 051703 (2005)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43 (1999)

    Article  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)

    Article  Google Scholar 

  • Boek, E.S., Venturoli, M.: Lattice–Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305 (2010)

    Article  Google Scholar 

  • Bo-Ming, Y., Jian-Hua, L.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21(8), 1569 (2004)

    Article  Google Scholar 

  • Bosco, F.D., Zhang, Y.: Variance-reduction kinetic simulation of low-speed rarefied gas flow through long microchannels of annular cross sections. Phys. Fluids 32(8), 082002 (2020)

    Article  Google Scholar 

  • Cai, C., Boyd, I.D., Fan, J., Candler, G.V.: Direct simulation methods for low-speed microchannel flows. J. Thermophys. Heat Transfer 14(3), 368 (2000)

    Article  Google Scholar 

  • Cercignani, C., Daneri, A.: Flow of a rarefied gas between two parallel plates. J. Appl. Phys. 34(12), 3509 (1963)

    Article  Google Scholar 

  • Cha, S.W., O’Hayre, R., Prinz, F.B.: The influence of size scale on the performance of fuel cells. Solid State Ionics 175(1–4), 789 (2004)

    Article  Google Scholar 

  • Chun, J., Koch, D.: A direct simulation Monte Carlo method for rarefied gas flows in the limit of small Mach number. Phys. Fluids 17(10), 107107 (2005)

    Article  Google Scholar 

  • Churcher, P., French, P., Shaw, J., Schramm, L., et al.: Rock properties of Berea sandstone, Baker dolomite, and Indiana limestone, in SPE International Symposium on. Oilfield Chem. 21044, 431–446 (1991)

    Google Scholar 

  • Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82(2), 375 (2010)

    Article  Google Scholar 

  • Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. Lond. 122(1), 299 (1997)

    Article  Google Scholar 

  • Darcy, H.P.G.: Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc (V. Dalamont, 1856)

  • Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84(3), 036319 (2011)

    Article  Google Scholar 

  • Fan, J., Shen, C.: Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys. 167(2), 393 (2001)

    Article  Google Scholar 

  • Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122(4), 2541 (2017)

    Article  Google Scholar 

  • Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P., Debenest, G.: Computational permeability determination from pore-scale imaging: Sample size, mesh and method sensitivities. Transp. Porous Media 107(3), 641 (2015)

    Article  Google Scholar 

  • Guo, Z., Xu, K., R, W.: Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case. Phys. Rev. E 88(3), 033305 (2013)

  • Hadjiconstantinou, N.G., Radtke, G.A., Baker, L.L.: Low-variance Monte Carlo Solutions of the Boltzmann transport equation. arXiv preprint arXiv:0905.2218 (2009)

  • Hadjiconstantinou, N.G., Radtke, G.A., Baker, L.L.: On variance-reduced simulations of the Boltzmann transport equation for small-scale heat transfer applications. J. Heat Transfer 132(11), 112401 (2010)

    Article  Google Scholar 

  • Ho, M.T., Li, J., Su, W., Wu, L., Borg, M.K., Li, Z., Zhang, Y.: Rarefied flow separation in microchannel with bends. J. Fluid Mech. 901, (2020)

  • Ho, M.T., Wu, L., Graur, I., Zhang, Y., Reese, J.M.: Comparative study of the Boltzmann and McCormack equations for Couette and Fourier flows of binary gaseous mixtures. Int. J. Heat Mass Transf. 126, 1222 (2016)

    Google Scholar 

  • Ho, M.T., Li, J., Wu, L., Reese, J.M., Zhang, Y.: A comparative study of the DSBGK and DVM methods for low-speed rarefied gas flows. Comput. Fluids 181, 143 (2019)

    Article  Google Scholar 

  • Ho, M.T., Zhu, L., Wu, L., Wang, P., Guo, Z., Ma, J., Zhang, Y.: Pore-scale simulations of rarefied gas flows in ultra-tight porous media. Fuel 249, 341 (2019)

    Article  Google Scholar 

  • Ho, M.T., Zhu, L., Wu, L., Wang, P., Guo, Z., Li, Z.H., Zhang, Y.: A multi-level parallel solver for rarefied gas flows in porous media. Comput. Phys. Commun. 234, 14 (2019)

    Article  Google Scholar 

  • Holway, L.H., Jr.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9(9), 1658 (1966)

    Article  Google Scholar 

  • Homolle, T.T.M.M. : Efficient particle methods for solving the Boltzmann equation. Ph.D. thesis, Massachusetts Institute of Technology (2007)

  • Homolle, T.M., Hadjiconstantinou, N.G.: A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226(2), 2341 (2007)

    Article  Google Scholar 

  • Homolle, T.M., Hadjiconstantinou, N.G.: Low-variance deviational simulation Monte Carlo. Phys. Fluids 19(4), 041701 (2007)

    Article  Google Scholar 

  • Klinkenberg, L. et al.: The permeability of porous media to liquids and gases. In: Drilling and Production Practice, American Petroleum Institute (1941)

  • Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406 (1996)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319 (1997)

    Article  Google Scholar 

  • Lachaud, J., Mansour, N.: Microscopic scale simulation of the ablation of fibrous materials. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010), p. 984

  • Li, J., Sultan, A.S. et al.: Permeability computations of shale gas by the pore-scale Monte Carlo molecular simulations. In: International Petroleum Technology Conference (2015)

  • Li, J.: in Direct simulation method based on BGK equation.In: AIP Conference Proceedings, vol. 1333, pp. 283–288 (2011)

  • Li, J.: In Efficiency and stability of the DSBGK method. In: AIP Conference Proceedings, vol. 1501, pp. 849–856 (2012)

  • Li, J.: Efficient prediction of gas permeability by hybrid DSBGK-LBM simulations. Fuel 250, 154 (2019)

    Article  Google Scholar 

  • Li, J., Sultan, A.S.: Klinkenberg slippage effect in the permeability computations of shale gas by the pore-scale simulations. J. Natl. Gas Sci. Eng. 48, 197 (2017)

    Article  Google Scholar 

  • Matyka, M., Koza, Z.: In How to calculate tortuosity easily? In: AIP Conference Proceedings, vol. 1453, pp. 17–22 (2012)

  • Matyka, M., Khalili, A., Koza, Z.: Tortuosity-porosity relation in porous media flow. Phys. Rev. E 78(2), 026306 (2008)

    Article  Google Scholar 

  • Meng, J., Zhang, Y., Hadjiconstantinou, N.G., Radtke, G.A., Shan, X.: Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J. Fluid Mech. 718, 347 (2013)

    Article  Google Scholar 

  • Merrikh, A.A., Lage, J.L.: Effect of blood flow on gas transport in a pulmonary capillary. J. Biomech. Eng. 127(3), 432 (2005)

    Article  Google Scholar 

  • Muskat, M., Wyckoff, R., Botset, H., Meres, M., et al.: Flow of gas-liquid mixtures through sands. Trans. AIME 123(1), 69 (1937)

    Article  Google Scholar 

  • Nabovati, A., Sousa, A.: Fluid flow simulation in random porous media at pore level using lattice Boltzmann method. In: New Trends in Fluid Mechanics Research, Springer, Berlin, pp. 518–521 (2007)

  • Nance, R.P., Hash, D.B., Hassan, H.: Role of boundary conditions in Monte Carlo simulation of microelectromechanical systems. J. Thermophys. Heat Transfer 12(3), 447 (1998)

    Article  Google Scholar 

  • Platkowski, T., Illner, R.: Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30(2), 213 (1988)

    Article  Google Scholar 

  • Radtke, G.A., Hadjiconstantinou, N.G.: Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation. Phys. Rev. E 79(5), 056711 (2009)

    Article  Google Scholar 

  • Radtke, G.A., Hadjiconstantinou, N.G., Wagner, W.: Low-noise Monte Carlo simulation of the variable hard sphere gas. Phys. Fluids 23(3), 030606 (2011)

    Article  Google Scholar 

  • Radtke, G.A., Hadjiconstantinou, N.G., Takata, S., Aoki, K.: On the second-order temperature jump coefficient of a dilute gas. J. Fluid Mech. 707, 331 (2012)

    Article  Google Scholar 

  • Radtke, G.A., Péraud, J.P.M., Hadjiconstantinou, N.G.: On efficient simulations of multiscale kinetic transport. Philos. Trans. R.Soc. A Math. Phys. Eng. Sci. 371(1982), 20120182 (2013)

    Article  Google Scholar 

  • Shakhov, E.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3(5), 95 (1968)

    Article  Google Scholar 

  • Shen, C., Tian, D., Xie, C., Fan, J.: Examination of the LBM in simulation of microchannel flow in transitional regime. Microscale Thermophys. Eng. 8(4), 423 (2004)

    Article  Google Scholar 

  • Sheppard, A., Prodanovic, M.: Network generation comparison forum (2015). http://www.digitalrocksportal.org/projects/16https://doi.org/10.17612/P7059V

  • Su, W., Zhu, L., Wang, P., Zhang, Y., Wu, L.: Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations? J. Comput. Phys. 407, 109245 (2020)

    Article  Google Scholar 

  • Su, W., Zhang, Y., Wu, L.: Multiscale simulation of molecular gas flows by the general synthetic iterative scheme. Comput. Methods Appl. Mech. Eng. 373, 113548 (2021)

    Article  Google Scholar 

  • Sun, Q., Boyd, I.D.: A direct simulation method for subsonic, microscale gas flows. J. Comput. Phys. 179(2), 400 (2002)

    Article  Google Scholar 

  • Tang, G., Tao, W., He, Y.: Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Phys. Rev. E 72(5), 056301 (2005)

    Article  Google Scholar 

  • Tang, G., Bi, C., Zhao, Y., Tao, W.: Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 90, 701 (2015)

    Article  Google Scholar 

  • Wang, M., Zhu, W.: Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method. Int. J. Heat Mass Transf. 96, 29 (2016)

    Google Scholar 

  • Wang, P., Ho, M.T., Wu, L., Guo, Z., Zhang, Y.: A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput. Fluids 161, 33 (2018)

    Article  Google Scholar 

  • White, C., Borg, M.K., Scanlon, T.J., Reese, J.M.: A DSMC investigation of gas flows in micro-channels with bends. Comput. Fluids 71, 261 (2013)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217 (2013)

    Article  Google Scholar 

  • Wu, L., Zhang, J., Liu, H., Zhang, Y., Reese, J.M.: A fast iterative scheme for the linearized Boltzmann equation. J. Comput. Phys. 338, 431 (2017)

    Article  Google Scholar 

  • Wu, L., Ho, M.T., Germanou, L., Gu, X.J., Liu, C., Xu, K., Zhang, Y.: On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech. 822, 398 (2017)

    Article  Google Scholar 

  • Xu, K., Wang, J.C.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229, 7747 (2010)

    Article  Google Scholar 

  • Yang, W., Gu, X.J., Wu, L., Emerson, D.R., Zhang, Y., Tang, S.: A hybrid approach to couple the discrete velocity method and Method of Moments for rarefied gas flows. J. Comput. Phys. p. 109397 (2020)

  • Yang, Y., Wang, K., Zhang, L., Sun, H., Zhang, K., Ma, J.: Pore-scale simulation of shale oil flow based on pore network model. Fuel 251, 683 (2019)

    Article  Google Scholar 

  • Zhang, Y., Qin, R., Emerson, D.R.: Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys. Rev. E 71(4), 047702 (2005)

    Article  Google Scholar 

  • Zhang, Y.H., Gu, X.J., Barber, R.W., Emerson, D.R.: Capturing Knudsen layer phenomena using a lattice Boltzmann model. Phys. Rev. E 74(4), 046704 (2006)

    Article  Google Scholar 

  • Zhu, L., Pi, C., Su, W., Li, Z., Zhang, Y., Wu, L.: General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows. J. Comput. Phys. 430, 110091 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Minh Tuan Ho of Edinburgh University UK, Dr. Lei Wu of Southern University of Science and Technology, China, and Dr. Thomas Burel of Strathclyde University, UK, for useful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosco, F.D., Zhang, Y. Pore-Scale Study of Rarefied Gas Flows Using Low-Variance Deviational Simulation Monte Carlo Method. Transp Porous Med 138, 25–48 (2021). https://doi.org/10.1007/s11242-021-01588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01588-0

Keywords

Navigation